About 170 nations have been affected by the COvid VIrus Disease-19(COVID-19)*** governing bodies across the globe,a lot of stress is created by COVID-19 as there is a continuous rise in patient count testing positive,...
详细信息
About 170 nations have been affected by the COvid VIrus Disease-19(COVID-19)*** governing bodies across the globe,a lot of stress is created by COVID-19 as there is a continuous rise in patient count testing positive,and they feel challenging to tackle this *** researchers concentrate on COVID-19 data analysis using the machine learning paradigm in these *** the previous works,Long Short-Term Memory(LSTM)was used to predict future COVID-19 *** to LSTM network data,the outbreak is expected tofinish by June ***,there is a chance of an over-fitting problem in LSTM and true positive;it may not produce the required *** COVID-19 dataset has lower accuracy and a higher error rate in the existing *** proposed method has been introduced to overcome the above-mentioned *** COVID-19 prediction,a Linear Decreasing Inertia Weight-based Cat Swarm Optimization with Half Binomial Distribution based Convolutional Neural Network(LDIWCSO-HBDCNN)approach is *** this suggested research study,the COVID-19 predicting dataset is employed as an input,and the min-max normalization approach is employed to normalize *** features are selected using Linear Decreasing Inertia Weight-based Cat Swarm Optimization(LDIWCSO)algorithm,enhancing the accuracy of *** Cat Swarm Optimization(CSO)algorithm’s convergence is enhanced using inertia weight in the LDIWCSO *** is used to select the essential features using the bestfitness function *** a specified time across India,death and confirmed cases are predicted using the Half Binomial Distribution based Convolutional Neural Network(HBDCNN)technique based on selected *** demonstrated by empirical observations,the proposed system produces significant performance in terms of f-measure,recall,precision,and accuracy.
This work offers a comprehensive investigation of sentiment analysis in social media communication through the integration of deep learning techniques with a natural language processing (NLP) methodology. The goal of ...
详细信息
Cloud storage auditing research is dedicated to solving the data integrity problem of outsourced storage on the cloud. In recent years, researchers have proposed various cloud storage auditing schemes using different ...
详细信息
Cloud storage auditing research is dedicated to solving the data integrity problem of outsourced storage on the cloud. In recent years, researchers have proposed various cloud storage auditing schemes using different techniques. While these studies are elegant in theory, they assume an ideal cloud storage model;that is, they assume that the cloud provides the storage and compute interfaces as required by the proposed schemes. However, this does not hold for mainstream cloud storage systems because these systems only provide read and write interfaces but not the compute interface. To bridge this gap, this work proposes a serverless computing-based cloud storage auditing system for existing mainstream cloud object storage. The proposed system leverages existing cloud storage auditing schemes as a basic building block and makes two adaptations. One is that we use the read interface of cloud object storage to support block data requests in a traditional cloud storage auditing scheme. Another is that we employ the serverless computing paradigm to support block data computation as traditionally required. Leveraging the characteristics of serverless computing, the proposed system realizes economical, pay-as-you-go cloud storage auditing. The proposed system also supports mainstream cloud storage upper layer applications(e.g., file preview) by not modifying the data formats when embedding authentication tags for later auditing. We prototyped and open-sourced the proposed system to a mainstream cloud service, i.e., Tencent Cloud. Experimental results show that the proposed system is efficient and promising for practical use. For 40 GB of data, auditing takes approximately 98 s using serverless computation. The economic cost is 120.48 CNY per year, of which serverless computing only accounts for 46%. In contrast, no existing studies reported cloud storage auditing results for real-world cloud services.
The importance of secure data sharing in fog computing is increasing due to the growing number of Internet of Things(IoT)*** article addresses the privacy and security issues brought up by data sharing in the context ...
详细信息
The importance of secure data sharing in fog computing is increasing due to the growing number of Internet of Things(IoT)*** article addresses the privacy and security issues brought up by data sharing in the context of IoT fog *** suggested framework,called"BlocFogSec",secures key management and data sharing through blockchain consensus and smart *** existing solutions,BlocFogSec utilizes two types of smart contracts for secure key exchange and data sharing,while employing a consensus protocol to validate transactions and maintain blockchain *** process and store data effectively at the network edge,the framework makes use of fog computing,notably reducing latency and raising *** successfully blocks unauthorized access and data breaches by restricting transactions to authorized *** addition,the framework uses a consensus protocol to validate and add transactions to the blockchain,guaranteeing data accuracy and *** compare BlocFogSec's performance to that of other models,a number of simulations are *** simulation results indicate that BlocFogSec consistently outperforms existing models,such as Security Services for Fog Computing(SSFC)and Blockchain-based Key Management Scheme(BKMS),in terms of throughput(up to 5135 bytes per second),latency(as low as 7 ms),and resource utilization(70%to 92%).The evaluation also takes into account attack defending accuracy(up to 100%),precision(up to 100%),and recall(up to 99.6%),demonstrating BlocFogSec's effectiveness in identifying and preventing potential attacks.
A recent study revealed that fake articles spread considerably faster than factual content on Twitter, specifically at a 70% higher rate of retweets and reaching the first 1,500 users six times faster. This highlights...
详细信息
The integration of technologies like artificial intelligence,6G,and vehicular ad-hoc networks holds great potential to meet the communication demands of the Internet of Vehicles and drive the advancement of vehicle **...
详细信息
The integration of technologies like artificial intelligence,6G,and vehicular ad-hoc networks holds great potential to meet the communication demands of the Internet of Vehicles and drive the advancement of vehicle ***,these advancements also generate a surge in data processing requirements,necessitating the offloading of vehicular tasks to edge servers due to the limited computational capacity of *** recent advancements,the robustness and scalability of the existing approaches with respect to the number of vehicles and edge servers and their resources,as well as privacy,remain a *** this paper,a lightweight offloading strategy that leverages ubiquitous connectivity through the Space Air Ground Integrated Vehicular Network architecture while ensuring privacy preservation is *** Internet of Vehicles(IoV)environment is first modeled as a graph,with vehicles and base stations as nodes,and their communication links as ***,vehicular applications are offloaded to suitable servers based on latency using an attention-based heterogeneous graph neural network(HetGNN)***,a differential privacy stochastic gradient descent trainingmechanism is employed for privacypreserving of vehicles and offloading ***,the simulation results demonstrated that the proposedHetGNN method shows good performance with 0.321 s of inference time,which is 42.68%,63.93%,30.22%,and 76.04% less than baseline methods such as Deep Deterministic Policy Gradient,Deep Q Learning,Deep Neural Network,and Genetic Algorithm,respectively.
In a crowd density estimation dataset,the annotation of crowd locations is an extremely laborious task,and they are not taken into the evaluation *** this paper,we aim to reduce the annotation cost of crowd datasets,a...
详细信息
In a crowd density estimation dataset,the annotation of crowd locations is an extremely laborious task,and they are not taken into the evaluation *** this paper,we aim to reduce the annotation cost of crowd datasets,and propose a crowd density estimation method based on weakly-supervised learning,in the absence of crowd position supervision information,which directly reduces the number of crowds by using the number of pedestrians in the image as the supervised *** this purpose,we design a new training method,which exploits the correlation between global and local image features by incremental learning to train the ***,we design a parent-child network(PC-Net)focusing on the global and local image respectively,and propose a linear feature calibration structure to train the PC-Net simultaneously,and the child network learns feature transfer factors and feature bias weights,and uses the transfer factors and bias weights to linearly feature calibrate the features extracted from the Parent network,to improve the convergence of the network by using local features hidden in the crowd *** addition,we use the pyramid vision transformer as the backbone of the PC-Net to extract crowd features at different levels,and design a global-local feature loss function(L2).We combine it with a crowd counting loss(LC)to enhance the sensitivity of the network to crowd features during the training process,which effectively improves the accuracy of crowd density *** experimental results show that the PC-Net significantly reduces the gap between fullysupervised and weakly-supervised crowd density estimation,and outperforms the comparison methods on five datasets of Shanghai Tech Part A,ShanghaiTech Part B,UCF_CC_50,UCF_QNRF and JHU-CROWD++.
Purpose: The difficulty of diagnosing several lung disorders, including atelectasis, cardiomegaly, lung cancer, and COVID-19, is a challenging problem and needs to be addressed. These conditions exhibit some symptoms ...
详细信息
Purpose: The difficulty of diagnosing several lung disorders, including atelectasis, cardiomegaly, lung cancer, and COVID-19, is a challenging problem and needs to be addressed. These conditions exhibit some symptoms and demand advanced medical imaging process, thorough clinical assessments, and innovative procedures for accurate diagnosis. The shortage of qualified radiologists further makes the problem more complex to deal with. COVID-19 in particular has resulted in a remarkable number of fatalities around the world. Children below the age of 5 and individuals over 65 are more likely to be affected by lung disorders. It is very hard to diagnose and manage COVID-19 absolutely, but it can be identified earlier by employing computer-aided diagnosis (CAD) technologies to make timely diagnosis. Currently, radiologists adopt technologies, which are driven by artificial intelligence. By using them, medical imaging data, such as chest X-rays and CT scans, can be investigated to identify patterns to diagnose the severity of the virus. This expedites the diagnostic process and enhances accuracy, facilitating more timely and precise medical interventions. The efficiency of artificial intelligence in processing large datasets can directly help healthcare professionals in making diagnosis quicker and more accurate. The objective of the work in this paper is to design and implement deep learning model classifiers, which will effectively categorize the patterns found in the X-rays and CT scans. Methods: Three techniques for categorization are exploited to propose an entirely new hybrid convolutional neural network (CNN) model in this context. MRI and CT image categorization in the first classification method employ Fully Connected (FC) layers. The weights are calculated and tuned for training the algorithm over multiple periods to deliver the maximum precision for classification. The most accurate MRI and CT image characteristics are studied, and deep learning model classifiers
As one of the most popular technologies nowadays, cloud computing has a big demand in the distributed software space. It is highly difficult for CSPs to work together in a multi-cloud context, and contemporary literat...
详细信息
Container-based virtualization technology has been more widely used in edge computing environments recently due to its advantages of lighter resource occupation, faster startup capability, and better resource utilizat...
详细信息
Container-based virtualization technology has been more widely used in edge computing environments recently due to its advantages of lighter resource occupation, faster startup capability, and better resource utilization efficiency. To meet the diverse needs of tasks, it usually needs to instantiate multiple network functions in the form of containers interconnect various generated containers to build a Container Cluster(CC). Then CCs will be deployed on edge service nodes with relatively limited resources. However, the increasingly complex and timevarying nature of tasks brings great challenges to optimal placement of CC. This paper regards the charges for various resources occupied by providing services as revenue, the service efficiency and energy consumption as cost, thus formulates a Mixed Integer Programming(MIP) model to describe the optimal placement of CC on edge service nodes. Furthermore, an Actor-Critic based Deep Reinforcement Learning(DRL) incorporating Graph Convolutional Networks(GCN) framework named as RL-GCN is proposed to solve the optimization problem. The framework obtains an optimal placement strategy through self-learning according to the requirements and objectives of the placement of CC. Particularly, through the introduction of GCN, the features of the association relationship between multiple containers in CCs can be effectively extracted to improve the quality of *** experiment results show that under different scales of service nodes and task requests, the proposed method can obtain the improved system performance in terms of placement error ratio, time efficiency of solution output and cumulative system revenue compared with other representative baseline methods.
暂无评论