The flow shop scheduling problem is important for the manufacturing *** flow shop scheduling can bring great benefits to the ***,there are few types of research on Distributed Hybrid Flow Shop Problems(DHFSP)by learni...
详细信息
The flow shop scheduling problem is important for the manufacturing *** flow shop scheduling can bring great benefits to the ***,there are few types of research on Distributed Hybrid Flow Shop Problems(DHFSP)by learning assisted *** work addresses a DHFSP with minimizing the maximum completion time(Makespan).First,a mathematical model is developed for the concerned ***,four Q-learning-assisted meta-heuristics,e.g.,genetic algorithm(GA),artificial bee colony algorithm(ABC),particle swarm optimization(PSO),and differential evolution(DE),are *** to the nature of DHFSP,six local search operations are designed for finding high-quality solutions in local *** of randomselection,Q-learning assists meta-heuristics in choosing the appropriate local search operations during ***,based on 60 cases,comprehensive numerical experiments are conducted to assess the effectiveness of the proposed *** experimental results and discussions prove that using Q-learning to select appropriate local search operations is more effective than the random *** verify the competitiveness of the Q-learning assistedmeta-heuristics,they are compared with the improved iterated greedy algorithm(IIG),which is also for solving *** Friedman test is executed on the results by five *** is concluded that the performance of four Q-learning-assisted meta-heuristics are better than IIG,and the Q-learning-assisted PSO shows the best competitiveness.
Swarm robotics describes the coordination among multiple robots assigned to perform a single task collectively and work as a system. The system is usually used in search and-rescue missions in adverse natural environm...
详细信息
Agriculture, the backbone of many economies, faces challenges like lack of information, outdated practices, and limited access to technology, hindering farmer productivity. This work proposes a user-friendly, multilin...
详细信息
Agriculture, the backbone of many economies, faces challenges like lack of information, outdated practices, and limited access to technology, hindering farmer productivity. This work proposes a user-friendly, multilingual platform leveraging Generative AI to address farmers' diverse needs. The platform encompasses various features to enhance agricultural practices. An LLM-powered Government Scheme Advisor functions as a multilingual chatbot offering intelligent guidance on government agricultural schemes and subsidies. The Disease Detection module utilizes AI technology for real-time identification and treatment recommendations, minimizing crop diseases and yield losses. The Soil Testing Centre feature locates nearby soil testing centers, providing essential information based on geographical data to assist farmers in optimizing soil quality. A Crop Recommendation feature employs Machine Learning algorithms to offer personalized crop recommendations, considering various factors and aiding informed decision-making. The Crop Planning Tool, with its intuitive user interface, simplifies planning planting schedules and managing resources. Additionally, the platform includes an MSP Center Locator to find nearby Minimum Support Price (MSP) centers based on location. By integrating these innovative solutions, this platform bridges the gap between conventional agricultural techniques and contemporary technology, equipping farmers with the resources and expertise essential for advancing productivity and sustainability. Multilingual support ensures accessibility for a wider audience, breaking down language barriers and promoting inclusivity in the agricultural sector. This work proposes an innovative, multilingual platform powered by Generative AI to address these issues. Key features include an LLM-driven chatbot for government scheme guidance, AI-based real-time disease detection, and location-based tools for soil testing and MSP center identification. Additionally, the platf
Agricultural production is critical to the economy. This is one of the reasons why disease detection in plants is so important in agricultural settings, as plant disease is rather common. Farmers are not engaged in in...
详细信息
Agricultural production is critical to the economy. This is one of the reasons why disease detection in plants is so important in agricultural settings, as plant disease is rather common. Farmers are not engaged in increasing their agricultural productivity daily since there are no technologies in the previous system to detect diseases in various crops in an agricultural environment. With the exponential population growth, food scarcity is a huge concern globally. In addition to this, the productivity of agricultural products has been highly impacted by the rapid increase in phytopathological adversities. The main challenges in leaf segmentation and plant disease identification are prior knowledge is required for segmentation, the implementation still lacks the accuracy of results, and more tweaking is required. To reduce the devastating impacts of illnesses on the economy, early detection of illnesses in plants is therefore essential. This paper describes an approach for segmenting and detecting plant leaf diseases based on images acquired via the Internet of Things (IoT) network. Here, a plant leaf area is segmented with a UNet, whose trainable parameters are optimized using the Mayfly Bald Eagle Optimization (MBEO) algorithm. Further, plant type classification is carried out by the Deep batch normalized AlexNet (DbneAlexNet), optimized by the Sine Cosine Algorithm-based Rider Neural Network (SCA-based RideNN). Finally, the DbneAlexNet, with weights adapted by the MBEO algorithm, is used to identify plant disease. The Plant Village dataset is used to evaluate the proposed DbneAlexNet-MBEO for plant-type classification and disease detection. The efficiency of the UNet-MBEO for segmentation is examined based on the Dice coefficient and Intersectin over Union (IOU) and has achieved superior values of 0.927 and 0.907. Moreover, the DbneAlexNet-MBEO is examined considering accuracy, Test Negative Rate (TNR), and Test Positive Rate (TPR) and offered superior values of 0
In the realm of education, the pursuit of effective learning outcomes often faces the challenge of limited resources. This paper explores the intersection of maximizing learning outcomes and minimizing costs through a...
详细信息
The robustness of graph neural networks(GNNs) is a critical research topic in deep *** researchers have designed regularization methods to enhance the robustness of neural networks,but there is a lack of theoretical...
详细信息
The robustness of graph neural networks(GNNs) is a critical research topic in deep *** researchers have designed regularization methods to enhance the robustness of neural networks,but there is a lack of theoretical analysis on the principle of *** order to tackle the weakness of current robustness designing methods,this paper gives new insights into how to guarantee the robustness of GNNs.A novel regularization strategy named Lya-Reg is designed to guarantee the robustness of GNNs by Lyapunov *** results give new insights into how regularization can mitigate the various adversarial effects on different graph *** experiments on various public datasets demonstrate that the proposed regularization method is more robust than the state-of-theart methods such as L1-norm,L2-norm,L2-norm,Pro-GNN,PA-GNN and GARNET against various types of graph adversarial attacks.
Earthquake damage prediction is crucial for ensuring the safety of building occupants and preventing substantial financial losses. Because it enables robust structural design, financial readiness, and well-timed expen...
详细信息
Earthquake damage prediction is crucial for ensuring the safety of building occupants and preventing substantial financial losses. Because it enables robust structural design, financial readiness, and well-timed expenditures in preventive measures, anticipating seismic impacts promotes sustainability and long-term building. Machine learning (ML) have transformed building damage prediction, providing efficient methodologies for assessing structural vulnerabilities and risks. ML analyzes multifaceted datasets, handling complex spatial and temporal data, enhancing accuracy in forecasting damage probabilities and enabling proactive monitoring for timely interventions. However, ensemble machine learning and the fine-tuning of such algorithms with the hyperparameter optimization with the earthquake damage prediction have not been explored in the literature yet. Hyperparameter optimization in machine learning enhances model performance and generalization capacity. Skillful adjustment of hyperparameters significantly improves predictive accuracy, resilience, and training convergence, ensuring optimal model performance across diverse datasets and real-world scenarios. This study focuses on improving earthquake damage prediction accuracy through an extensive analysis of the earthquake dataset on ensemble machine learning with hyperparameter tuning. Utilizing various hyperparameter tuning algorithms and examining five ensemble machine learning algorithms, combined with six distinct hyperparameter tuning techniques, significantly enhanced accuracy. The paper’s main contributions include exploring novel hyperparameter tuning algorithms for earthquake damage prediction and filling a knowledge gap in the field. The thorough dataset analysis revealed a scarcity of existing literature, suggesting opportunities for further research. The study underscores the critical role of hyperparameter analysis in machine learning and proposes potential applications beyond earthquake prediction,
The Metaverse depicts a parallel digitalized world where virtuality and reality are *** has economic and social systems like those in the real world and provides intelligent services and *** this paper,we introduce th...
详细信息
The Metaverse depicts a parallel digitalized world where virtuality and reality are *** has economic and social systems like those in the real world and provides intelligent services and *** this paper,we introduce the Metaverse from a new technology perspective,including its essence,corresponding technical framework,and potential technical ***,we analyze the essence of the Metaverse from its etymology and point out breakthroughs promising to be made in time,space,and contents of the Metaverse by citing Maslow's Hierarchy of ***,we conclude four pillars of the Metaverse,named ubiquitous connections,space convergence,virtuality and reality interaction,and human-centered communication,and establish a corresponding technical ***,we envision open issues and challenges of the Metaverse in the technical *** work proposes a new technology perspective of the Metaverse and will provide further guidance for its technology development in the future.
Advancements in maritime satellite technology have significantly impacted the maritime industry, enhancing both communication and safety at sea. These technological improvements have enabled Automatic Identification S...
详细信息
Blockchain technology has the characteristics of non-tampering and forgery, traceability, and so on, which have good application advantages for the storage of multimedia data. So we propose a novel method using matrix...
详细信息
暂无评论