The most widely farmed fruit in the world is *** the production and quality of the mangoes are hampered by many *** diseases need to be effectively controlled and ***,a quick and accurate diagnosis of the disorders is...
详细信息
The most widely farmed fruit in the world is *** the production and quality of the mangoes are hampered by many *** diseases need to be effectively controlled and ***,a quick and accurate diagnosis of the disorders is *** convolutional neural networks,renowned for their independence in feature extraction,have established their value in numerous detection and classification ***,it requires large training datasets and several parameters that need careful *** proposed Modified Dense Convolutional Network(MDCN)provides a successful classification scheme for plant diseases affecting mango *** model employs the strength of pre-trained networks and modifies them for the particular context of mango leaf diseases by incorporating transfer learning *** data loader also builds mini-batches for training the models to reduce training ***,optimization approaches help increase the overall model’s efficiency and lower computing *** employed on the MangoLeafBD Dataset consists of a total of 4,000 *** the experimental results,the proposed system is compared with existing techniques and it is clear that the proposed algorithm surpasses the existing algorithms by achieving high performance and overall throughput.
Predicting the metastatic direction of primary breast cancer (BC), thus assisting physicians in precise treatment, strict follow-up, and effectively improving the prognosis. The clinical data of 293,946 patients with ...
详细信息
Graph processing has been widely used in many scenarios,from scientific computing to artificial *** processing exhibits irregular computational parallelism and random memory accesses,unlike traditional ***,running gra...
详细信息
Graph processing has been widely used in many scenarios,from scientific computing to artificial *** processing exhibits irregular computational parallelism and random memory accesses,unlike traditional ***,running graph processing workloads on conventional architectures(e.g.,CPUs and GPUs)often shows a significantly low compute-memory ratio with few performance benefits,which can be,in many cases,even slower than a specialized single-thread graph *** domain-specific hardware designs are essential for graph processing,it is still challenging to transform the hardware capability to performance boost without coupled software *** article presents a graph processing ecosystem from hardware to *** start by introducing a series of hardware accelerators as the foundation of this ***,the codesigned parallel graph systems and their distributed techniques are presented to support graph ***,we introduce our efforts on novel graph applications and hardware *** results show that various graph applications can be efficiently accelerated in this graph processing ecosystem.
Unmanned and aerial systems as interactors among different system components for communications,have opened up great opportunities for truth data discovery in Mobile Crowd Sensing(MCS)which has not been properly solve...
详细信息
Unmanned and aerial systems as interactors among different system components for communications,have opened up great opportunities for truth data discovery in Mobile Crowd Sensing(MCS)which has not been properly solved in the *** this paper,an Unmanned Aerial Vehicles-supported Intelligent Truth Discovery(UAV-ITD)scheme is proposed to obtain truth data at low-cost communications for *** main innovations of the UAV-ITD scheme are as follows:(1)UAV-ITD scheme takes the first step in employing UAV joint Deep Matrix Factorization(DMF)to discover truth data based on the trust mechanism for an Information Elicitation Without Verification(IEWV)problem in MCS.(2)This paper introduces a truth data discovery scheme for the first time that only needs to collect a part of n data samples to infer the data of the entire network with high accuracy,which saves more communication costs than most previous data collection schemes,where they collect n or kn data ***,we conducted extensive experiments to evaluate the UAV-ITD *** results show that compared with previous schemes,our scheme can reduce estimated truth error by 52.25%–96.09%,increase the accuracy of workers’trust evaluation by 0.68–61.82 times,and save recruitment costs by 24.08%–54.15%in truth data discovery.
Skin cancer is a serious and potentially life-threatening condition caused by DNA damage in the skin cells, leading to genetic mutations and abnormal cell growth. These mutations can cause the cells to divide and grow...
详细信息
Skin cancer is a serious and potentially life-threatening condition caused by DNA damage in the skin cells, leading to genetic mutations and abnormal cell growth. These mutations can cause the cells to divide and grow uncontrollably, forming a tumor on the skin. To prevent skin cancer from spreading and potentially leading to serious complications, it's critical to identify and treat it as early as possible. An innovative two-fold deep learning based skin cancer detection model is presented in this research work. Five main stages make up the proposed model: Preprocessing, segmentation, feature extraction, feature selection, and skin cancer detection. Initially, the Min–max contrast stretching and median filtering used to pre-process the collected raw image. From the pre-processed image, the Region of Intertest (ROI) is identified via optimized mask Region-based Convolutional Neural Network (R-CNN). Then, from the identified ROI areas, the texture features like Illumination-invariant Binary Gabor Pattern (II-BGP), Local Binary Pattern (LBP), Gray-Level Co-occurrence Matrix (GLCM), Color feature such as Color Correlogram and Histogram Intersection, and Shape feature including Moments, Area, Perimeter, Eccentricity, Average bending energy are extracted. To choose the optimal features from the extracted ones, the Golden Eagle Mutated Leader Optimization (GEMLO) is used. The proposed Golden Eagle Mutated Leader Optimization (GEMLO) is the conceptual amalgamation of the standard Mutated Leader Algorithm (MLA) and Golden Eagle Optimizer are used to select best features (GEO). The skin cancer detection is accomplished via two-fold-deep-learning-classifiers, that includes the Fully Convolutional Neural Networks (FCNs) and Multi-Layer Perception (MLP). The final outcome is the combination of the outcomes acquired from Fully Convolutional Neural Networks (FCNs) and Multi-Layer Perception (MLP). The PYTHON platform is being used to implement the suggested model. Using the curre
In this study, tests were done to see what would happen if hydrogen (H2) and lemon grass oil (LO) were used for a lone-cylinder compression ignition engine as a partial diesel replacement. After starting the trial wit...
详细信息
Image deraining is a highly ill-posed *** significant progress has been made due to the use of deep convolutional neural networks,this problem still remains challenging,especially for the details restoration and gener...
详细信息
Image deraining is a highly ill-posed *** significant progress has been made due to the use of deep convolutional neural networks,this problem still remains challenging,especially for the details restoration and generalization to real rain *** this paper,we propose a deep residual channel attention network(DeRCAN)for *** channel attention mechanism is able to capture the inherent properties of the feature space and thus facilitates more accurate estimations of structures and details for image *** addition,we further propose an unsupervised learning approach to better solve real rain images based on the proposed *** qualitative and quantitative evaluation results on both synthetic and real-world images demonstrate that the proposed DeRCAN performs favorably against state-of-the-art methods.
Numerical simulation is employed to investigate the initial state of avalanche in polydisperse particle *** and propagation processes are illustrated for pentadisperse and triadisperse particle systems,*** these proce...
详细信息
Numerical simulation is employed to investigate the initial state of avalanche in polydisperse particle *** and propagation processes are illustrated for pentadisperse and triadisperse particle systems,*** these processes,particles involved in the avalanche grow slowly in the early stage and explosively in the later stage,which is clearly different from the continuous and steady growth trend in the monodisperse *** examining the avalanche propagation,the number growth of particles involved in the avalanche and the slope of the number growth,the initial state can be divided into three stages:T1(nucleation stage),T2(propagation stage),T3(overall avalanche stage).We focus on the characteristics of the avalanche in the T2 stage,and find that propagation distances increase almost linearly in both axial and radial directions in polydisperse *** also consider the distribution characteristics of the average coordination number and average velocity for the moving *** results support that the polydisperse particle systems are more stable in the T2 stage.
Fires are becoming one of the major natural hazards that threaten the ecology, economy, human life and even more worldwide. Therefore, early fire detection systems are crucial to prevent fires from spreading out of co...
详细信息
Emotions have a significant impact on how people make decisions. Due to its potential applications in various fields, emotion intensity detection has attracted a lot of attention recently. Several methods have been pr...
详细信息
暂无评论