咨询与建议

限定检索结果

文献类型

  • 515 篇 会议
  • 435 篇 期刊文献
  • 5 册 图书

馆藏范围

  • 955 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 659 篇 工学
    • 438 篇 计算机科学与技术...
    • 359 篇 软件工程
    • 122 篇 控制科学与工程
    • 101 篇 生物工程
    • 84 篇 信息与通信工程
    • 81 篇 电子科学与技术(可...
    • 64 篇 电气工程
    • 50 篇 生物医学工程(可授...
    • 42 篇 动力工程及工程热...
    • 40 篇 机械工程
    • 35 篇 光学工程
    • 28 篇 仪器科学与技术
    • 28 篇 化学工程与技术
    • 24 篇 建筑学
    • 23 篇 材料科学与工程(可...
    • 22 篇 安全科学与工程
  • 429 篇 理学
    • 234 篇 数学
    • 116 篇 生物学
    • 96 篇 物理学
    • 85 篇 统计学(可授理学、...
    • 58 篇 系统科学
    • 29 篇 化学
  • 131 篇 管理学
    • 77 篇 管理科学与工程(可...
    • 57 篇 图书情报与档案管...
    • 49 篇 工商管理
  • 43 篇 医学
    • 40 篇 临床医学
    • 33 篇 基础医学(可授医学...
    • 23 篇 药学(可授医学、理...
  • 33 篇 法学
    • 29 篇 社会学
  • 20 篇 经济学
    • 20 篇 应用经济学
  • 12 篇 教育学
  • 12 篇 农学
  • 3 篇 军事学
  • 2 篇 文学
  • 1 篇 艺术学

主题

  • 22 篇 reinforcement le...
  • 13 篇 deep neural netw...
  • 13 篇 machine learning
  • 12 篇 data mining
  • 12 篇 hardware
  • 11 篇 deep learning
  • 11 篇 predictive model...
  • 11 篇 forecasting
  • 10 篇 computational mo...
  • 10 篇 visualization
  • 9 篇 semantics
  • 9 篇 autonomous vehic...
  • 9 篇 stochastic syste...
  • 9 篇 training
  • 8 篇 computer science
  • 8 篇 task analysis
  • 8 篇 algorithms
  • 8 篇 convex optimizat...
  • 8 篇 data models
  • 7 篇 embedded systems

机构

  • 29 篇 department of el...
  • 24 篇 department of co...
  • 17 篇 department of st...
  • 17 篇 department of el...
  • 16 篇 department of el...
  • 16 篇 department of el...
  • 15 篇 computer science...
  • 14 篇 department of co...
  • 13 篇 department of el...
  • 10 篇 department of co...
  • 9 篇 computer science...
  • 9 篇 uc berkeley depa...
  • 9 篇 department of co...
  • 8 篇 center for embed...
  • 8 篇 department of co...
  • 8 篇 uc berkeley depa...
  • 8 篇 department of el...
  • 8 篇 department of el...
  • 8 篇 openai
  • 7 篇 department of el...

作者

  • 21 篇 abbeel pieter
  • 14 篇 jordan michael i...
  • 13 篇 levine sergey
  • 11 篇 rosing tajana
  • 11 篇 wainwright marti...
  • 10 篇 belkin mikhail
  • 10 篇 mcauley julian
  • 9 篇 yu bin
  • 9 篇 vahid frank
  • 8 篇 chen xi
  • 7 篇 michael i. jorda...
  • 7 篇 shonle macneil
  • 7 篇 sadigh dorsa
  • 7 篇 pedarsani ramtin
  • 7 篇 tajana rosing
  • 6 篇 darrell trevor
  • 6 篇 kastner ryan
  • 6 篇 gupta rajesh
  • 6 篇 waller laura
  • 6 篇 yin ming

语言

  • 893 篇 英文
  • 57 篇 其他
  • 5 篇 中文
检索条件"机构=Computer Science and Engineering Uc"
955 条 记 录,以下是231-240 订阅
排序:
OMKar: Optical Map Based Automated Karyotyping of Genomes to Identify Constitutional Disorders  29th
OMKar: Optical Map Based Automated Karyotyping of Genomes t...
收藏 引用
29th International Conference on Research in Computational Molecular Biology, RECOMB 2025
作者: Raeisi Dehkordi, Siavash Jia, Zhaoyang Estabrook, Joey Hauenstein, Jen Miller, Neil Güleray-Lafci, Naz Neesen, Jürgen Hastie, Alex Pang, Andy Wing Chun Dremsek, Paul Bafna, Vineet Department of Computer Science and Engineering UC San Diego La JollaCA United States Bionano Genomics Inc. 9540 Towne Centre Drive Suite 100 San DiegoCA92121 United States Halicioğlu Data Science Institute UC San Diego La JollaCA United States Institute of Medical Genetics Center for Pathobiochemistry and Genetics Medical University of Vienna Vienna1090 Austria
The whole genome karyotype represents the sequence of large chromosomal segments that define an individual’s genotype, encompassing variants such as aneuploidies, balanced, and unbalanced translocations. Karyotype an... 详细信息
来源: 评论
Robust online joint state/input/parameter estimation of linear systems
arXiv
收藏 引用
arXiv 2022年
作者: Brouillon, Jean-Sébastien Moffat, Keith Dörfler, Florian Ferrari-Trecate, Giancarlo The Institute of Mechanical Engineering École Polytechnique Fédérale de Lausanne Switzerland The Electrical Engineering and Computer Science Department Uc Berkeley United States Switzerland
This paper presents a method for jointly estimating the state, input, and parameters of linear systems in an online fashion. The method is specially designed for measurements that are corrupted with non-Gaussian noise... 详细信息
来源: 评论
ConceptEVA: Concept-Based Interactive Exploration and Customization of Document Summaries
arXiv
收藏 引用
arXiv 2023年
作者: Zhang, Xiaoyu Li, Jianping Kelvin Chi, Po-Wei Chandrasegaran, Senthil Ma, Kwan-Liu Department of Computer Science University of California Davis DavisCA United States Databricks Work Done at UC Davis San JoseCA United States Work Done at UC Davis AustinTX United States Faculty of Industrial Design Engineering TU Delft Delft Netherlands
With the most advanced natural language processing and artificial intelligence approaches, effective summarization of long and multi-topic documents—such as academic papers—for readers from different domains still r... 详细信息
来源: 评论
Meta-learning Spiking Neural Networks with Surrogate Gradient Descent
arXiv
收藏 引用
arXiv 2022年
作者: Stewart, Kenneth M. Neftci, Emre O. Department of Computer Science UC Irvine IrvineCA United States Department of Computer Science Department of Cognitive Sciences UC Irvine Peter Grünberg Institute – Neuromorphic Software Ecosystems Forschungszentrum Jülich Germany Faculty of Electrical Engineering and Information Technology RWTH Aachen Germany
Adaptive "life-long" learning at the edge and during online task performance is an aspirational goal of AI research. Neuromorphic hardware implementing Spiking Neural Networks (SNNs) are particularly attract... 详细信息
来源: 评论
Generative AI in Medicine
arXiv
收藏 引用
arXiv 2024年
作者: Shanmugam, Divya Agrawal, Monica Movva, Rajiv Chen, Irene Y. Ghassemi, Marzyeh Jacobs, Maia Pierson, Emma Department of Computer Science Cornell Tech New York10044 United States Department of Biostatistics and Bioinformatics Duke University Durham27705 United States Department of Computer Science Duke University Durham27708 United States Department of Computational Precision Health UC Berkeley UCSF Berkeley94709 United States Department of Electrical Engineering and Computer Science Berkeley AI Research Berkeley94709 United States Department of Electrical Engineering and Computer Science Institute for Medical Engineering and Science Massachusetts Institute of Technology Cambridge02139 United States Department of Computer Science Northwestern University Evanston60208 United States Department of Preventive Medicine Northwestern University Evanston60208 United States Department of Population Health Sciences Weill Cornell Medical College New York10044 United States
The increased capabilities of generative AI have dramatically expanded its possible use cases in medicine. We provide a comprehensive overview of generative AI use cases for clinicians, patients, clinical trial organi... 详细信息
来源: 评论
Machine learning based autism spectrum disorder detection from videos  22
Machine learning based autism spectrum disorder detection fr...
收藏 引用
22nd IEEE International Conference on E-Health Networking, Application and Services, HEALTHCOM 2020
作者: Wu, Chongruo Liaqat, Sidrah Helvaci, Halil Chcung, Sen-Ching Samson Chuah, Chen-Nee Ozonoff, Sally Young, Gregory University of California Department of Computer Science DavisCA United States University of Kentucky Department of Electrical and Computer Engineering LexingtonKY United States University of California Department of Electrical and Computer Engineering DavisCA United States UC Davis MIND Institute University of California DavisCA United States
Early diagnosis of Autism Spectrum Disorder (ASD) is crucial for best outcomes to interventions. In this paper, we present a machine learning (ML) approach to ASD diagnosis based on identifying specific behaviors from... 详细信息
来源: 评论
Block-Wise Mixed-Precision Quantization: Enabling High Efficiency for Practical ReRAM-based DNN Accelerators
arXiv
收藏 引用
arXiv 2023年
作者: Wu, Xueying Hanson, Edward Wang, Nansu Zheng, Qilin Yang, Xiaoxuan Yang, Huanrui Li, Shiyu Cheng, Feng Pande, Partha Pratim Doppa, Janardhan Rao Chakrabarty, Krishnendu Li, Hai The Department of Electrical and Computer Engineering Duke University DurhamNC27708 United States The EECS Department UC Berkeley BerkeleyCA94720 United States The School of Electrical Computer and Energy Engineering Arizona State University TempeAZ85281 United States The School of Electrical Engineering and Computer Science Washington State University PullmanWA99163 United States
Resistive random access memory (ReRAM)-based processing-in-memory (PIM) architectures have demonstrated great potential to accelerate Deep Neural Network (DNN) training/inference. However, the computational accuracy o... 详细信息
来源: 评论
Time series analysis and anomaly detection for trustworthy smart homes
收藏 引用
computers and Electrical engineering 2022年 102卷
作者: Priyadarshini, Ishaani Alkhayyat, Ahmed Gehlot, Anita Kumar, Raghvendra School of Information UC Berkeley United States College of technical engineering The Islamic University Najaf Iraq UIT Uttaranchal University Uttarakhand Dehradun India Department of Computer Science and Engineering GIET University India
The IoT network is expected to harbor several zettabytes of information in the future. Since trust and integrity are critical to IoT, it is essential to imbibe trust into the IoT environment for ensuring dependability... 详细信息
来源: 评论
Semi-parametric inference based on adaptively collected data
arXiv
收藏 引用
arXiv 2023年
作者: Lin, Licong Khamaru, Koulik Wainwright, Martin J. Department of Electrical Engineering and Computer Sciences UC Berkeley United States Department of Statistics UC Berkeley United States Department of Statistics Rutgers University United States Laboratory for Information and Decision Systems Statistics and Data Science Center EECS and Mathematics Massachusetts Institute of Technology United States
Many standard estimators, when applied to adaptively collected data, fail to be asymptotically normal, thereby complicating the construction of confidence intervals. We address this challenge in a semi-parametric cont... 详细信息
来源: 评论
Hardware-efficient residual networks for FPGAs
arXiv
收藏 引用
arXiv 2021年
作者: Weng, Olivia Khodamoradi, Alireza Kastner, Ryan Dept. of Computer Science and Engineering UC San Diego United States
Residual networks (ResNets) employ skip connections in their networks-reusing activations from previous layers-to improve training convergence, but these skip connections create challenges for hardware implementations... 详细信息
来源: 评论