咨询与建议

限定检索结果

文献类型

  • 515 篇 会议
  • 433 篇 期刊文献
  • 5 册 图书

馆藏范围

  • 953 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 658 篇 工学
    • 433 篇 计算机科学与技术...
    • 355 篇 软件工程
    • 117 篇 控制科学与工程
    • 103 篇 生物工程
    • 84 篇 信息与通信工程
    • 81 篇 电子科学与技术(可...
    • 64 篇 电气工程
    • 50 篇 生物医学工程(可授...
    • 42 篇 动力工程及工程热...
    • 40 篇 机械工程
    • 36 篇 光学工程
    • 29 篇 仪器科学与技术
    • 28 篇 化学工程与技术
    • 25 篇 建筑学
    • 23 篇 材料科学与工程(可...
    • 22 篇 安全科学与工程
  • 430 篇 理学
    • 234 篇 数学
    • 117 篇 生物学
    • 97 篇 物理学
    • 85 篇 统计学(可授理学、...
    • 58 篇 系统科学
    • 29 篇 化学
  • 132 篇 管理学
    • 78 篇 管理科学与工程(可...
    • 57 篇 图书情报与档案管...
    • 49 篇 工商管理
  • 42 篇 医学
    • 39 篇 临床医学
    • 32 篇 基础医学(可授医学...
    • 23 篇 药学(可授医学、理...
  • 35 篇 法学
    • 30 篇 社会学
  • 20 篇 经济学
    • 20 篇 应用经济学
  • 13 篇 教育学
  • 12 篇 农学
  • 3 篇 军事学
  • 2 篇 文学
  • 1 篇 艺术学

主题

  • 22 篇 reinforcement le...
  • 13 篇 deep neural netw...
  • 12 篇 data mining
  • 12 篇 machine learning
  • 12 篇 hardware
  • 11 篇 deep learning
  • 11 篇 predictive model...
  • 11 篇 forecasting
  • 10 篇 computational mo...
  • 10 篇 visualization
  • 9 篇 semantics
  • 9 篇 stochastic syste...
  • 9 篇 training
  • 8 篇 computer science
  • 8 篇 task analysis
  • 8 篇 algorithms
  • 8 篇 autonomous vehic...
  • 8 篇 convex optimizat...
  • 8 篇 data models
  • 7 篇 embedded systems

机构

  • 29 篇 department of el...
  • 24 篇 department of co...
  • 17 篇 department of st...
  • 17 篇 department of el...
  • 16 篇 department of el...
  • 16 篇 department of el...
  • 15 篇 computer science...
  • 14 篇 department of co...
  • 13 篇 department of el...
  • 10 篇 department of co...
  • 9 篇 computer science...
  • 9 篇 uc berkeley depa...
  • 9 篇 department of co...
  • 8 篇 center for embed...
  • 8 篇 department of co...
  • 8 篇 uc berkeley depa...
  • 8 篇 department of el...
  • 8 篇 department of el...
  • 8 篇 openai
  • 7 篇 department of el...

作者

  • 21 篇 abbeel pieter
  • 14 篇 jordan michael i...
  • 13 篇 levine sergey
  • 11 篇 rosing tajana
  • 11 篇 wainwright marti...
  • 10 篇 belkin mikhail
  • 10 篇 mcauley julian
  • 9 篇 yu bin
  • 9 篇 vahid frank
  • 8 篇 chen xi
  • 7 篇 michael i. jorda...
  • 7 篇 shonle macneil
  • 7 篇 sadigh dorsa
  • 7 篇 pedarsani ramtin
  • 7 篇 tajana rosing
  • 6 篇 darrell trevor
  • 6 篇 kastner ryan
  • 6 篇 gupta rajesh
  • 6 篇 waller laura
  • 6 篇 yin ming

语言

  • 893 篇 英文
  • 55 篇 其他
  • 5 篇 中文
检索条件"机构=Computer Science and Engineering Uc"
953 条 记 录,以下是471-480 订阅
排序:
Learning programmatic idioms for scalable semantic parsing
arXiv
收藏 引用
arXiv 2019年
作者: Iyer, Srinivasan Cheung, Alvin Zettlemoyer, Luke Paul G. Allen School of Computer Science and Engineering Univ. of Washington SeattleWA United States Department of Electrical Engineering and Computer Sciences UC Berkeley BerkeleyCA United States Facebook AI Research Seattle
Programmers typically organize executable source code using high-level coding patterns or idiomatic structures such as nested loops, exception handlers and recursive blocks, rather than as individual code tokens. In c... 详细信息
来源: 评论
Analysis of the Optimization Landscapes for Overcomplete Representation Learning
arXiv
收藏 引用
arXiv 2019年
作者: Qu, Qing Zhai, Yuexiang Li, Xiao Zhang, Yuqian Zhu, Zhihui Center for Data Science New York University EECS Department UC Berkeley Silicon Valley Lab ByteDance Inc Department of Electronic Engineering Chinese University of Hong Kong Department of Electrical & Computer Engineering Rutgers University Mathematical Institute of Data Science Johns Hopkins University Department of Electrical & Computer Engineering University of Denver
We study nonconvex optimization landscapes for learning overcomplete representations, including learning (i) sparsely used overcomplete dictionaries and (ii) convolutional dictionaries, where these unsupervised learni... 详细信息
来源: 评论
High-density memristor-CMOS ternary logic family
TechRxiv
收藏 引用
TechRxiv 2020年
作者: Wang, Xiaoyuan Zhou, Pengfei Eshraghian, Jason K. Lin, Chih-Yang Iu, Herbert Ho-Ching Chang, Ting-Chang Kang, Sung-Mo The School of Electronics and Information Hangzhou Dianzi University Hanzghou 310018 China The Department of Electrical Engineering and Computer Science University of Michigan Ann ArborMI48105 United States The Department of Physics National Sun Yat-Sen University Kaohsiung80424 Taiwan The School of Electrical and Electronic Engineering The University of Western Australia Crawley WA6009 Australia The Jack Baskin School of Engineering UC Santa Cruz Santa CruzCA95064 United States
This paper presents the first experimental demonstration of a ternary memristor-CMOS logic family. We systematically design, simulate and experimentally verify the primitive logic functions: the ternary AND, OR and NO... 详细信息
来源: 评论
PID2018 Benchmark Challenge: Multi-Objective Stochastic Optimization Algorithm
收藏 引用
IFAC-PapersOnLine 2018年 第4期51卷 877-881页
作者: Ates, Abdullah Yuan, Jie Dehghan, Sina Zhao, Yang Yeroglu, Celaleddin Chen, YangQuan Inonu University Computer Engineering Department Malatya44280 Turkey School of Automation Southeast University Nanjing210096 China UC Merced Mechanical Engineering Departments MESA Lab MercedCA95301 United States School of Control Science and Engineering at Shandong University Jinan250061 China
This paper presents a multi-objective stochastic optimization method for tuning of the controller parameters of Refrigeration Systems based on Vapour Compression. Stochastic Multi Parameter Divergence Optimization (SM... 详细信息
来源: 评论
Imitation from Observation: Learning to Imitate Behaviors from Raw Video via Context Translation
Imitation from Observation: Learning to Imitate Behaviors fr...
收藏 引用
IEEE International Conference on Robotics and Automation
作者: YuXuan Liu Abhishek Gupta Pieter Abbeel Sergey Levine Department of Electrical Engineering and Computer Science UC Berkeley
Imitation learning is an effective approach for autonomous systems to acquire control policies when an explicit reward function is unavailable, using supervision provided as demonstrations from an expert, typically a ... 详细信息
来源: 评论
Deep Object-Centric Representations for Generalizable Robot Learning
Deep Object-Centric Representations for Generalizable Robot ...
收藏 引用
IEEE International Conference on Robotics and Automation (ICRA)
作者: Coline Devin Pieter Abbeel Trevor Darrell Sergey Levine UC Berkeley Department of Electrical Engineering and Computer Science
Robotic manipulation in complex open-world scenarios requires both reliable physical manipulation skills and effective and generalizable perception. In this paper, we propose using an object-centric prior and a semant... 详细信息
来源: 评论
Meta learning shared hierarchies  6
Meta learning shared hierarchies
收藏 引用
6th International Conference on Learning Representations, ICLR 2018
作者: Frans, Kevin Ho, Jonathan Chen, Xi Abbeel, Pieter Schulman, John Henry M. Gunn High School United States UC Berkeley Department of Electrical Engineering and Computer Science United States OpenAI United States
We develop a metalearning approach for learning hierarchically structured policies, improving sample efficiency on unseen tasks through the use of shared primitives—policies that are executed for large numbers of tim... 详细信息
来源: 评论
Local binary pattern networks
arXiv
收藏 引用
arXiv 2018年
作者: Lin, Jeng-Hau Yang, Yunfan Gupta, Rajesh Tu, Zhuowen Department of Computer Science and Engineering UC San Diego Department of Cognitive Science UC San Diego
Memory and computation efficient deep learning architectures are crucial to continued proliferation of machine learning capabilities to new platforms and systems. Binarization of operations in convolutional neural net... 详细信息
来源: 评论
In Which Areas of Technical AI Safety Could Geopolitical Rivals Cooperate?
arXiv
收藏 引用
arXiv 2025年
作者: Bucknall, Ben Siddiqui, Saad Thurnherr, Lara McGurk, Conor Harack, Ben Reuel, Anka Paskov, Patricia Mahoney, Casey Mindermann, Sören Singer, Scott Hiremath, Vinay Segerie, Charbel-Raphaël Delaney, Oscar Abate, Alessandro Barez, Fazl Cohen, Michael K. Torr, Philip Huszár, Ferenc Calinescu, Anisoara Jones, Gabriel Davis Bengio, Yoshua Trager, Robert Department of Engineering Science University of Oxford Oxford Martin AI Governance Initiative United Kingdom Safe AI Forum Oxford Martin AI Governance Initiative United Kingdom King’s College London United Kingdom Safe AI Forum United Kingdom Oxford Martin AI Governance Initiative United Kingdom Stanford University The Belfer Center for Science and International Affairs Harvard Kennedy School United States RAND Mila - Quebec AI Institute Canada Carnegie Endowment for International Peace Oxford Martin AI Governance Initiative United Kingdom Centre for the Governance of AI United Kingdom France Institute for AI Policy and Strategy Department of Computer Science University of Oxford United Kingdom Department of Engineering Science University of Oxford United Kingdom UC Berkeley Center for Human Compatible AI United States University of Cambridge United Kingdom Oxford Digital Health Labs University of Oxford United Kingdom Oxford Martin AI Governance Initiative Blavatnik School of Government University of Oxford United Kingdom
International cooperation is common in AI research, including between geopolitical rivals. While many experts advocate for greater international cooperation on AI safety to address shared global risks, some view coope... 详细信息
来源: 评论
Sim-to-Real Transfer of Robotic Control with Dynamics Randomization
Sim-to-Real Transfer of Robotic Control with Dynamics Random...
收藏 引用
IEEE International Conference on Robotics and Automation
作者: Xue Bin Peng Marcin Andrychowicz Wojciech Zaremba Pieter Abbeel Department of Electrical Engineering and Computer Science UC Berkeley OpenAI
Simulations are attractive environments for training agents as they provide an abundant source of data and alleviate certain safety concerns during the training process. But the behaviours developed by agents in simul... 详细信息
来源: 评论