咨询与建议

限定检索结果

文献类型

  • 515 篇 会议
  • 433 篇 期刊文献
  • 5 册 图书

馆藏范围

  • 953 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 658 篇 工学
    • 433 篇 计算机科学与技术...
    • 355 篇 软件工程
    • 117 篇 控制科学与工程
    • 103 篇 生物工程
    • 84 篇 信息与通信工程
    • 81 篇 电子科学与技术(可...
    • 64 篇 电气工程
    • 50 篇 生物医学工程(可授...
    • 42 篇 动力工程及工程热...
    • 40 篇 机械工程
    • 36 篇 光学工程
    • 29 篇 仪器科学与技术
    • 28 篇 化学工程与技术
    • 25 篇 建筑学
    • 23 篇 材料科学与工程(可...
    • 22 篇 安全科学与工程
  • 430 篇 理学
    • 234 篇 数学
    • 117 篇 生物学
    • 97 篇 物理学
    • 85 篇 统计学(可授理学、...
    • 58 篇 系统科学
    • 29 篇 化学
  • 132 篇 管理学
    • 78 篇 管理科学与工程(可...
    • 57 篇 图书情报与档案管...
    • 49 篇 工商管理
  • 42 篇 医学
    • 39 篇 临床医学
    • 32 篇 基础医学(可授医学...
    • 23 篇 药学(可授医学、理...
  • 35 篇 法学
    • 30 篇 社会学
  • 20 篇 经济学
    • 20 篇 应用经济学
  • 13 篇 教育学
  • 12 篇 农学
  • 3 篇 军事学
  • 2 篇 文学
  • 1 篇 艺术学

主题

  • 22 篇 reinforcement le...
  • 13 篇 deep neural netw...
  • 12 篇 data mining
  • 12 篇 machine learning
  • 12 篇 hardware
  • 11 篇 deep learning
  • 11 篇 predictive model...
  • 11 篇 forecasting
  • 10 篇 computational mo...
  • 10 篇 visualization
  • 9 篇 semantics
  • 9 篇 stochastic syste...
  • 9 篇 training
  • 8 篇 computer science
  • 8 篇 task analysis
  • 8 篇 algorithms
  • 8 篇 autonomous vehic...
  • 8 篇 convex optimizat...
  • 8 篇 data models
  • 7 篇 embedded systems

机构

  • 29 篇 department of el...
  • 24 篇 department of co...
  • 17 篇 department of st...
  • 17 篇 department of el...
  • 16 篇 department of el...
  • 16 篇 department of el...
  • 15 篇 computer science...
  • 14 篇 department of co...
  • 13 篇 department of el...
  • 10 篇 department of co...
  • 9 篇 computer science...
  • 9 篇 uc berkeley depa...
  • 9 篇 department of co...
  • 8 篇 center for embed...
  • 8 篇 department of co...
  • 8 篇 uc berkeley depa...
  • 8 篇 department of el...
  • 8 篇 department of el...
  • 8 篇 openai
  • 7 篇 department of el...

作者

  • 21 篇 abbeel pieter
  • 14 篇 jordan michael i...
  • 13 篇 levine sergey
  • 11 篇 rosing tajana
  • 11 篇 wainwright marti...
  • 10 篇 belkin mikhail
  • 10 篇 mcauley julian
  • 9 篇 yu bin
  • 9 篇 vahid frank
  • 8 篇 chen xi
  • 7 篇 michael i. jorda...
  • 7 篇 shonle macneil
  • 7 篇 sadigh dorsa
  • 7 篇 pedarsani ramtin
  • 7 篇 tajana rosing
  • 6 篇 darrell trevor
  • 6 篇 kastner ryan
  • 6 篇 gupta rajesh
  • 6 篇 waller laura
  • 6 篇 yin ming

语言

  • 893 篇 英文
  • 55 篇 其他
  • 5 篇 中文
检索条件"机构=Computer Science and Engineering Uc"
953 条 记 录,以下是531-540 订阅
排序:
Stochastic control via entropy compression  44
Stochastic control via entropy compression
收藏 引用
44th International Colloquium on Automata, Languages, and Programming, ICALP 2017
作者: Achlioptas, Dimitris Iliopoulos, Fotis Vlassis, Nikos Department of Computer Science UC Santa Cruz Santa CruzCA United States Department of Electrical Engineering and Computer Science UC Berkeley BerkeleyCA United States Adobe Research San JoseCA United States
Consider an agent trying to bring a system to an acceptable state by repeated probabilistic action. Several recent works on algorithmizations of the Lovász Local Lemma (LLL) can be seen as establishing sufficient... 详细信息
来源: 评论
Author Correction: Perceived match between own and observed models' bodies: influence of face, viewpoints, and body size
收藏 引用
Scientific reports 2020年 第1期10卷 17120页
作者: Lize De Coster Pablo Sánchez-Herrero Carlos Aliaga Miguel A Otaduy Jorge López-Moreno Ana Tajadura-Jiménez DEI Interactive Systems Group Department of Computer Science and Engineering Universidad Carlos III de Madrid Avenida de la Universidad 30 28911 Leganés Madrid Spain. lcoster@inf.uc3m.es. Seddi Labs Madrid Spain. Modeling and Virtual Reality Group Department of Computer Science Universidad Rey Juan Carlos Madrid Spain. Multimodal Simulation Lab Department of Computer Science and Architecture Computer Systems and Languages Statistics and Operative Investigation Universidad Rey Juan Carlos Madrid Spain. DEI Interactive Systems Group Department of Computer Science and Engineering Universidad Carlos III de Madrid Avenida de la Universidad 30 28911 Leganés Madrid Spain.
An amendment to this paper has been published and can be accessed via a link at the top of the paper.
来源: 评论
On neural phone recognition of mixed-source ecog signals
arXiv
收藏 引用
arXiv 2019年
作者: Abdelaziz, Ahmed Hussen Chang, Shuo-Yiin Morgan, Nelson Edwards, Erik Kolossa, Dorothea Ellis, Dan Moses, David A. Chang, Edward F. International Computer Science Institute BerkeleyCA United States Cognitive Signal Processing Group Ruhr-Universität Bochum Germany Electrical Engineering Department Columbia University NY NY United States Department of Neurological Surgery UC San Francisco San FranciscoCA United States Apple Inc. CupertinoCA United States
The emerging field of neural speech recognition (NSR) using electrocorticography has recently attracted remarkable research interest for studying how human brains recognize speech in quiet and noisy surroundings. In t... 详细信息
来源: 评论
The Impact of Culture on Learner Behavior in Visual Debuggers
The Impact of Culture on Learner Behavior in Visual Debugger...
收藏 引用
IEEE Symposium on Visual Languages and Human Centric Computing (VL/HCC)
作者: Kyle Thayer Philip J. Guo Katharina Reinecke Paul G. Allen School of Computer Science & Engineering University of Washington Seattle WA USA Dept. of Cognitive Science UC San Diego La Jolla CA USA
People around the world are learning to code using online resources. However, research has found that these learners might not gain equal benefit from such resources, in particular because culture may affect how peopl... 详细信息
来源: 评论
Stochastic gradient MCMC for state space models
arXiv
收藏 引用
arXiv 2018年
作者: Aicher, Christopher Ma, Yi-An Foti, Nicholas J. Fox, Emily B. Department of Statistics University of Washington WA Singapore Department of Electrical Engineering and Computer Sciences UC BerkeleyCA United States Paul G. Allen School of Computer Science and Engineering University of Washington WA United States
State space models (SSMs) are a flexible approach to modeling complex time series. However, inference in SSMs is often computationally prohibitive for long time series. Stochastic gradient MCMC (SGMCMC) is a popular m... 详细信息
来源: 评论
Area-only method for underwater object tracking using autonomous vehicles
Area-only method for underwater object tracking using autono...
收藏 引用
OCEANS - Europe
作者: Ivan Masmitja Spartacus Gomariz Joaquin Del-Rio Brian Kieft Tom O’Reilly Jacopo Aguzzi Pierre-Jean Bouvet Clara Fannjiang Kakani Katija SARTI Research Group Electronics Department Universitat Politècnica de Catalunya Barcelona Spain Monterey Bay Aquarium Research Institute Moss Landing U.S.A. Marine Science Institute Consejo Superior de Investigaciones Cientfica Barcelona Spain L@bisen SEANERGY Lab. ISEN Brest Yncréa Ouest Brest France Department of Electrical Engineering and Computer Science UC Berkeley Berkeley U.S.A.
The use of autonomous underwater vehicles for ocean research has increased as they have a better cost-to-performance ratio than crewed oceanographic vessels. For example, autonomous surface vehicles (e.g. a Wave Glide... 详细信息
来源: 评论
The duality gap for two-Team zero-sum games  8
The duality gap for two-Team zero-sum games
收藏 引用
8th Innovations in Theoretical computer science Conference, ITCS 2017
作者: Schulman, Leonard J Vazirani, Umesh V Caltech Engineering and Applied Science PasadenaMC305-1 United States UC Berkeley Computer Science Berkeley United States
We consider multiplayer games in which the players fall in two teams of size k, with payoffs equal within, and of opposite sign across, the two teams. In the classical case of k = 1, such zero-sum games possess a uniq... 详细信息
来源: 评论
Publisher Correction: The effect of large-scale anti-contagion policies on the COVID-19 pandemic
收藏 引用
Nature 2020年 第7824期585卷 E7页
作者: Solomon Hsiang Daniel Allen Sébastien Annan-Phan Kendon Bell Ian Bolliger Trinetta Chong Hannah Druckenmiller Luna Yue Huang Andrew Hultgren Emma Krasovich Peiley Lau Jaecheol Lee Esther Rolf Jeanette Tseng Tiffany Wu Global Policy Laboratory Goldman School of Public Policy UC Berkeley Berkeley CA USA. shsiang@berkeley.edu. National Bureau of Economic Research Cambridge MA USA. shsiang@berkeley.edu. Centre for Economic Policy Research London UK. shsiang@berkeley.edu. Global Policy Laboratory Goldman School of Public Policy UC Berkeley Berkeley CA USA. Agricultural & Resource Economics UC Berkeley Berkeley CA USA. Manaaki Whenua - Landcare Research Auckland New Zealand. Energy & Resources Group UC Berkeley Berkeley CA USA. Electrical Engineering & Computer Science Department UC Berkeley Berkeley CA USA.
An amendment to this paper has been published and can be accessed via a link at the top of the paper.
来源: 评论
Utilizing stability criteria in choosing feature selection methods yields reproducible results in microbiome data
arXiv
收藏 引用
arXiv 2020年
作者: Jiang, Lingjing Haiminen, Niina Carrieri, Anna-Paola Huang, Shi Vázquez-Baeza, Yoshiki Parida, Laxmi Kim, Ho-Cheol Swafford, Austin D. Knight, Rob Natarajan, Loki Division of Biostatistics University of California San Diego San diegoCA92093 United States IBM T. J. Watson Research Center Yorktown HeightsNY10598 United States IBM Research UK Hartree Center Warrington United Kingdom Center for Microbiome Innovation Jacobs School of Engineering UC San Diego San diegoCA92093 United States Department of Pediatrics University of California San Diego San diegoCA92093 United States Scalable Knowledge Intelligence IBM Research-Almaden San JoseCA95120 United States Department of Computer Science and Engineering University of California San Diego San diegoCA92093 United States Department of Bioengineering University of California San Diego San diegoCA92093 United States
Feature selection is indispensable in microbiome data analysis, but it can be particularly challenging as microbiome data sets are high-dimensional, underdetermined, sparse and compositional. Great efforts have recent... 详细信息
来源: 评论
The limits and potentials of deep learning for robotics
arXiv
收藏 引用
arXiv 2018年
作者: Sünderhauf, Niko Brock, Oliver Scheirer, Walter Hadsell, Raia Fox, Dieter Leitner, Jürgen Upcroft, Ben Abbeel, Pieter Burgard, Wolfram Milford, Michael Corke, Peter Brisbane Australia Robotics and Biology Laboratory Technische Universität Berlin Germany Department of Computer Science and Engineering University of Notre Dame IN United States DeepMind London United Kingdom Paul G. Allen School of Computer Science & Engineering University of Washington WA United States Oxbotica Ltd. Oxford United Kingdom UC Berkeley Department of Electrical Engineering and Computer Sciences CA United States Department of Computer Science University of Freiburg Germany
The application of deep learning in robotics leads to very specific problems and research questions that are typically not addressed by the computer vision and machine learning communities. In this paper we discuss a ... 详细信息
来源: 评论