咨询与建议

限定检索结果

文献类型

  • 515 篇 会议
  • 433 篇 期刊文献
  • 5 册 图书

馆藏范围

  • 953 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 658 篇 工学
    • 433 篇 计算机科学与技术...
    • 355 篇 软件工程
    • 117 篇 控制科学与工程
    • 103 篇 生物工程
    • 84 篇 信息与通信工程
    • 81 篇 电子科学与技术(可...
    • 64 篇 电气工程
    • 50 篇 生物医学工程(可授...
    • 42 篇 动力工程及工程热...
    • 40 篇 机械工程
    • 36 篇 光学工程
    • 29 篇 仪器科学与技术
    • 28 篇 化学工程与技术
    • 25 篇 建筑学
    • 23 篇 材料科学与工程(可...
    • 22 篇 安全科学与工程
  • 430 篇 理学
    • 234 篇 数学
    • 117 篇 生物学
    • 97 篇 物理学
    • 85 篇 统计学(可授理学、...
    • 58 篇 系统科学
    • 29 篇 化学
  • 132 篇 管理学
    • 78 篇 管理科学与工程(可...
    • 57 篇 图书情报与档案管...
    • 49 篇 工商管理
  • 42 篇 医学
    • 39 篇 临床医学
    • 32 篇 基础医学(可授医学...
    • 23 篇 药学(可授医学、理...
  • 35 篇 法学
    • 30 篇 社会学
  • 20 篇 经济学
    • 20 篇 应用经济学
  • 13 篇 教育学
  • 12 篇 农学
  • 3 篇 军事学
  • 2 篇 文学
  • 1 篇 艺术学

主题

  • 22 篇 reinforcement le...
  • 13 篇 deep neural netw...
  • 12 篇 data mining
  • 12 篇 machine learning
  • 12 篇 hardware
  • 11 篇 deep learning
  • 11 篇 predictive model...
  • 11 篇 forecasting
  • 10 篇 computational mo...
  • 10 篇 visualization
  • 9 篇 semantics
  • 9 篇 stochastic syste...
  • 9 篇 training
  • 8 篇 computer science
  • 8 篇 task analysis
  • 8 篇 algorithms
  • 8 篇 autonomous vehic...
  • 8 篇 convex optimizat...
  • 8 篇 data models
  • 7 篇 embedded systems

机构

  • 29 篇 department of el...
  • 24 篇 department of co...
  • 17 篇 department of st...
  • 17 篇 department of el...
  • 16 篇 department of el...
  • 16 篇 department of el...
  • 15 篇 computer science...
  • 14 篇 department of co...
  • 13 篇 department of el...
  • 10 篇 department of co...
  • 9 篇 computer science...
  • 9 篇 uc berkeley depa...
  • 9 篇 department of co...
  • 8 篇 center for embed...
  • 8 篇 department of co...
  • 8 篇 uc berkeley depa...
  • 8 篇 department of el...
  • 8 篇 department of el...
  • 8 篇 openai
  • 7 篇 department of el...

作者

  • 21 篇 abbeel pieter
  • 14 篇 jordan michael i...
  • 13 篇 levine sergey
  • 11 篇 rosing tajana
  • 11 篇 wainwright marti...
  • 10 篇 belkin mikhail
  • 10 篇 mcauley julian
  • 9 篇 yu bin
  • 9 篇 vahid frank
  • 8 篇 chen xi
  • 7 篇 michael i. jorda...
  • 7 篇 shonle macneil
  • 7 篇 sadigh dorsa
  • 7 篇 pedarsani ramtin
  • 7 篇 tajana rosing
  • 6 篇 darrell trevor
  • 6 篇 kastner ryan
  • 6 篇 gupta rajesh
  • 6 篇 waller laura
  • 6 篇 yin ming

语言

  • 893 篇 英文
  • 55 篇 其他
  • 5 篇 中文
检索条件"机构=Computer Science and Engineering Uc"
953 条 记 录,以下是551-560 订阅
排序:
Surprise-based intrinsic motivation for deep reinforcement learning
arXiv
收藏 引用
arXiv 2017年
作者: Achiam, Joshua Sastry, Shankar Department of Electrical Engineering and Computer Science UC Berkeley
Exploration in complex domains is a key challenge in reinforcement learning, especially for tasks with very sparse rewards. Recent successes in deep reinforcement learning have been achieved mostly using simple heuris... 详细信息
来源: 评论
Data-Rate and Network Coding Co-Design With Stability And Capacity Constraints
收藏 引用
IFAC-PapersOnLine 2017年 第1期50卷 6397-6402页
作者: Di Girolamo G.D. Di Benedetto M.D. Dilip A.S.A. Jungers R. Department of Information Engineering Computer Science and Mathematics Centre of Excellence DEWS University of L'Aquila Italy UC Louvain Institute of Information and Communication Technologies Electronics and Applied Mathematics (ICTEAM) Italy
Related to Networked Control Systems, the interaction between information theory and control theory is expected to be more and more important to improve the performance of control loops closed over wireless communicat... 详细信息
来源: 评论
Ten simple rules for reproducible research in jupyter notebooks
arXiv
收藏 引用
arXiv 2018年
作者: Rule, Adam Birmingham, Amanda Zuniga, Cristal Altintas, Ilkay Huang, Shih-Cheng Knight, Rob Moshiri, Niema Nguyen, Mai H. Rosenthal, Sara Brin Pérez, Fernando Rose, Peter W. Design Lab UC San Diego San DiegoCA United States Center for Computational Biology and Bioinformatics UC San Diego San DiegoCA United States Department of Pediatrics UC San Diego San DiegoCA United States Data Science Hub San Diego Supercomputer Center UC San Diego San DiegoCA United States Departments of Bioengineering and Computer Science and Engineering Center for Microbiome Innovation UC San Diego San DiegoCA United States Bioinformatics and Systems Biology Graduate Program UC San Diego San DiegoCA United States Department of Statistics Berkeley Institute for Data Science UC Berkeley Lawrence Berkeley National Laboratory BerkeleyCA United States Biomedical Informatics Graduate Program Stanford University StanfordCA United States
Reproducibility of computational studies is a hallmark of scientific methodology. It enables researchers to build with confidence on the methods and findings of others, reuse and extend computational pipelines, and th... 详细信息
来源: 评论
Pid2018 benchmark challenge: Multi-objective stochastic optimization algorithm
arXiv
收藏 引用
arXiv 2018年
作者: Ates, Abdullah Yuan, Jie Dehghan, Sina Zhao, Yang Yeroglu, Celaleddin Chen, YangQuan Inonu University Computer Engineering Department Malatya44280 Turkey School of Automation Southeast University Nanjing210096 China UC Merced Mechanical Engineering Departments MESA Lab MercedCA95301 United States School of Control Science and Engineering Shandong University Jinan250061 China
This paper presents a multi-objective stochastic optimization method for tuning of the controller parameters of Refrigeration Systems based on Vapour Compression. Stochastic Multi Parameter Divergence Optimization (SM... 详细信息
来源: 评论
Sim-to-real transfer of robotic control with dynamics randomization
arXiv
收藏 引用
arXiv 2017年
作者: Peng, Xue Bin Andrychowicz, Marcin Zaremba, Wojciech Abbeel, Pieter OpenAI UC Berkeley Department of Electrical Engineering and Computer Science
Simulations are attractive environments for training agents as they provide an abundant source of data and alleviate certain safety concerns during the training process. But the behaviours developed by agents in simul... 详细信息
来源: 评论
Learning invariant feature spaces to transfer skills with reinforcement learning
arXiv
收藏 引用
arXiv 2017年
作者: Gupta, Abhishek Devin, Coline Liu, YuXuan Abbeel, Pieter Levine, Sergey UC Berkeley Department of Electrical Engineering and Computer Science OpenAI
People can learn a wide range of tasks from their own experience, but can also learn from observing other creatures. This can accelerate acquisition of new skills even when the observed agent differs substantially fro... 详细信息
来源: 评论
Imitation from observation: Learning to imitate behaviors from raw video via context translation
arXiv
收藏 引用
arXiv 2017年
作者: Liu, YuXuan Gupta, Abhishek Abbeel, Pieter Levine, Sergey UC Berkeley Department of Electrical Engineering and Computer Science OpenAI
Imitation learning is an effective approach for autonomous systems to acquire control policies when an explicit reward function is unavailable, using supervision provided as demonstrations from an expert, typically a ... 详细信息
来源: 评论
Deep object-centric representations for generalizable robot learning
arXiv
收藏 引用
arXiv 2017年
作者: Devin, Coline Abbeel, Pieter Darrell, Trevor Levine, Sergey UC Berkeley Department of Electrical Engineering and Computer Science OpenAI
Robotic manipulation in complex open-world scenarios requires both reliable physical manipulation skills and effective and generalizable perception. In this paper, we propose a method where general purpose pretrained ... 详细信息
来源: 评论
Phase Coexistence of Ferroelectric Vortices and Classical a1/a2 Domains in PbTiO3/SrTiO3 Superlattices.
收藏 引用
Microscopy and Microanalysis 2018年 第S1期24卷 1638-1639页
作者: Christopher T. Nelson Zijian Hong Ajay K. Yadav Anoop R. Damodaran Shang-Lin Hsu James D. Clarkson Long-Qing Chen Lane W. Martin Ramamoorthy Ramesh Materials Science & Technology Division Oak Ridge National Laboratory Oak Ridge TN USA Department of Physics University of California Berkeley CA USA Materials Sciences Division Lawrence Berkeley National Laboratory Berkeley CA USA Department of Materials Science and Engineering Pennsylvania State University State College PA USA Department of Materials Science and Engineering University of California Berkeley CA USA School of Electrical Engineering and Computer Science UC Berkeley Berkeley California USA.
来源: 评论
Reinforcement learning with deep energy-based policies
arXiv
收藏 引用
arXiv 2017年
作者: Haarnoja, Tuomas Tang, Haoran Abbeel, Pieter Levine, Sergey Uc Berkeley Department of Electrical Engineering and Computer Sciences Uc Berkeley Department of Mathematics OpenAI International Computer Science Institute
We propose a method for learning expressive energy-based policies for continuous states and actions, which has been feasible only in tabular domains before. We apply our method to learning maximum entropy policies, re... 详细信息
来源: 评论