All the software products developed will need testing to ensure the quality and accuracy of the product. It makes the life of testers much easier when they can optimize on the effort spent and predict defects for the ...
详细信息
The earthquake early warning(EEW) system provides advance notice of potentially damaging ground shaking. In EEW, early estimation of magnitude is crucial for timely rescue operations. A set of thirty-four features is ...
详细信息
The earthquake early warning(EEW) system provides advance notice of potentially damaging ground shaking. In EEW, early estimation of magnitude is crucial for timely rescue operations. A set of thirty-four features is extracted using the primary wave earthquake precursor signal and site-specific *** Japan's earthquake magnitude dataset, there is a chance of a high imbalance concerning the earthquakes above strong impact. This imbalance causes a high prediction error while training advanced machine learning or deep learning models. In this work, Conditional Tabular Generative Adversarial Networks(CTGAN), a deep machine learning tool, is utilized to learn the characteristics of the first arrival of earthquake P-waves and generate a synthetic dataset based on this information. The result obtained using actual and mixed(synthetic and actual) datasets will be used for training the stacked ensemble magnitude prediction model, MagPred, designed specifically for this study. There are 13295, 3989, and1710 records designated for training, testing, and validation. The mean absolute error of the test dataset for single station magnitude detection using early three, four, and five seconds of P wave are 0.41, 0.40,and 0.38 MJMA. The study demonstrates that the Generative Adversarial Networks(GANs) can provide a good result for single-station magnitude prediction. The study can be effective where less seismic data is available. The study shows that the machine learning method yields better magnitude detection results compared with the several regression models. The multi-station magnitude prediction study has been conducted on prominent Osaka, Off Fukushima, and Kumamoto earthquakes. Furthermore, to validate the performance of the model, an inter-region study has been performed on the earthquakes of the India or Nepal region. The study demonstrates that GANs can discover effective magnitude estimation compared with non-GAN-based methods. This has a high potential for wid
The Internet of Things (IoT) transforms connectivity, enabling devices to share data seamlessly via the cloud or wireless networks. However, IoT systems remain vulnerable to sophisticated cyberattacks, and traditional...
详细信息
In the realm of deep learning, Generative Adversarial Networks (GANs) have emerged as a topic of significant interest for their potential to enhance model performance and enable effective data augmentation. This paper...
详细信息
Images obtained from hyperspectral sensors provide information about the target area that extends beyond the visible portions of the electromagnetic ***,due to sensor limitations and imperfections during the image acq...
详细信息
Images obtained from hyperspectral sensors provide information about the target area that extends beyond the visible portions of the electromagnetic ***,due to sensor limitations and imperfections during the image acquisition and transmission phases,noise is introduced into the acquired image,which can have a negative impact on downstream analyses such as classification,target tracking,and spectral *** in hyperspectral images(HSI)is modelled as a combination from several sources,including Gaussian/impulse noise,stripes,and *** HSI restoration method for such a mixed noise model is ***,a joint optimisation framework is proposed for recovering hyperspectral data corrupted by mixed Gaussian-impulse noise by estimating both the clean data as well as the sparse/impulse noise ***,a hyper-Laplacian prior is used along both the spatial and spectral dimensions to express sparsity in clean image ***,to model the sparse nature of impulse noise,anℓ_(1)−norm over the impulse noise gradient is *** the proposed methodology employs two distinct priors,the authors refer to it as the hyperspectral dual prior(HySpDualP)*** the best of authors'knowledge,this joint optimisation framework is the first attempt in this *** handle the non-smooth and nonconvex nature of the generalℓ_(p)−norm-based regularisation term,a generalised shrinkage/thresholding(GST)solver is ***,an efficient split-Bregman approach is used to solve the resulting optimisation *** results on synthetic data and real HSI datacube obtained from hyperspectral sensors demonstrate that the authors’proposed model outperforms state-of-the-art methods,both visually and in terms of various image quality assessment metrics.
Mobile Cloud Computing (MCC) is a new paradigm that has been emerged by the advances in the Cloud Computing for Mobile devices to access Cloud services. The data security challenges against the data thefting, deleting...
详细信息
In the enormous field of Natural Language Processing (NLP), deciphering the intended significance of a word among a multitude of possibilities is referred to as word sense disambiguation. This process is essential for...
详细信息
Recently, redactable blockchain has been proposed and leveraged in a wide range of real systems for its unique properties of decentralization, traceability, and transparency while ensuring controllable on-chain data r...
详细信息
Recently, redactable blockchain has been proposed and leveraged in a wide range of real systems for its unique properties of decentralization, traceability, and transparency while ensuring controllable on-chain data redaction. However, the development of redactable blockchain is now obstructed by three limitations, which are data privacy breaches, high communication overhead, and low searching efficiency, respectively. In this paper, we propose PriChain, the first efficient privacy-preserving fine-grained redactable blockchain in decentralized settings. PriChain provides data owners with rights to control who can read and redact on-chain data while maintaining downward compatibility, ensuring the one who can redact will be able to read. Specifically, inspired by the concept of multi-authority attribute-based encryption, we utilize the isomorphism of the access control tree, realizing fine-grained redaction mechanism, downward compatibility, and collusion resistance. With the newly designed structure, PriChain can realize O(n) communication and storage overhead compared to prior O(n2) schemes. Furthermore, we integrate multiple access trees into a tree-based dictionary, optimizing searching efficiency. Theoretical analysis proves that PriChain is secure against the chosen-plaintext attack and has competitive complexity. The experimental evaluations show that PriChain realizes 10× efficiency improvement of searching and 100× lower communication and storage overhead on average compared with existing schemes.
Thyroid nodules,a common disorder in the endocrine system,require accurate segmentation in ultrasound images for effective diagnosis and ***,achieving precise segmentation remains a challenge due to various factors,in...
详细信息
Thyroid nodules,a common disorder in the endocrine system,require accurate segmentation in ultrasound images for effective diagnosis and ***,achieving precise segmentation remains a challenge due to various factors,including scattering noise,low contrast,and limited resolution in ultrasound *** existing segmentation models have made progress,they still suffer from several limitations,such as high error rates,low generalizability,overfitting,limited feature learning capability,*** address these challenges,this paper proposes a Multi-level Relation Transformer-based U-Net(MLRT-UNet)to improve thyroid nodule *** MLRTUNet leverages a novel Relation Transformer,which processes images at multiple scales,overcoming the limitations of traditional encoding *** transformer integrates both local and global features effectively through selfattention and cross-attention units,capturing intricate relationships within the *** approach also introduces a Co-operative Transformer Fusion(CTF)module to combine multi-scale features from different encoding layers,enhancing the model’s ability to capture complex patterns in the ***,the Relation Transformer block enhances long-distance dependencies during the decoding process,improving segmentation *** results showthat the MLRT-UNet achieves high segmentation accuracy,reaching 98.2% on the Digital Database Thyroid Image(DDT)dataset,97.8% on the Thyroid Nodule 3493(TG3K)dataset,and 98.2% on the Thyroid Nodule3K(TN3K)*** findings demonstrate that the proposed method significantly enhances the accuracy of thyroid nodule segmentation,addressing the limitations of existing models.
The word “cancer” denotes a syndromes that can spread to various bodily areas and are brought on by abnormal cell proliferation. After cardiovascular illnesses, according to the World Health Organisation (WHO), canc...
详细信息
暂无评论