Graph Neural Networks(GNNs)have become a widely used tool for learning and analyzing data on graph structures,largely due to their ability to preserve graph structure and properties via graph representation ***,the ef...
详细信息
Graph Neural Networks(GNNs)have become a widely used tool for learning and analyzing data on graph structures,largely due to their ability to preserve graph structure and properties via graph representation ***,the effect of depth on the performance of GNNs,particularly isotropic and anisotropic models,remains an active area of *** study presents a comprehensive exploration of the impact of depth on GNNs,with a focus on the phenomena of over-smoothing and the bottleneck effect in deep graph neural *** research investigates the tradeoff between depth and performance,revealing that increasing depth can lead to over-smoothing and a decrease in performance due to the bottleneck *** also examine the impact of node degrees on classification accuracy,finding that nodes with low degrees can pose challenges for accurate *** experiments use several benchmark datasets and a range of evaluation metrics to compare isotropic and anisotropic GNNs of varying depths,also explore the scalability of these *** findings provide valuable insights into the design of deep GNNs and offer potential avenues for future research to improve their performance.
The extensive utilization of the Internet in everyday life can be attributed to the substantial accessibility of online services and the growing significance of the data transmitted via the ***,this development has ex...
详细信息
The extensive utilization of the Internet in everyday life can be attributed to the substantial accessibility of online services and the growing significance of the data transmitted via the ***,this development has expanded the potential targets that hackers might *** adequate safeguards,data transmitted on the internet is significantly more susceptible to unauthorized access,theft,or *** identification of unauthorised access attempts is a critical component of cybersecurity as it aids in the detection and prevention of malicious *** research paper introduces a novel intrusion detection framework that utilizes Recurrent Neural Networks(RNN)integrated with Long Short-Term Memory(LSTM)*** proposed model can identify various types of cyberattacks,including conventional and distinctive *** networks,a specific kind of feedforward neural networks,possess an intrinsic memory *** Neural Networks(RNNs)incorporating Long Short-Term Memory(LSTM)mechanisms have demonstrated greater capabilities in retaining and utilizing data dependencies over extended *** such as data types,training duration,accuracy,number of false positives,and number of false negatives are among the parameters employed to assess the effectiveness of these models in identifying both common and unusual *** are utilised in conjunction with LSTM to support human analysts in identifying possible intrusion events,hence enhancing their decision-making capabilities.A potential solution to address the limitations of Shallow learning is the introduction of the Eccentric Intrusion Detection *** model utilises Recurrent Neural Networks,specifically exploiting LSTM *** proposed model achieves detection accuracy(99.5%),generalisation(99%),and false-positive rate(0.72%),the parameters findings reveal that it is superior to state-of-the-art techniques.
Traditional e-commerce recommendation systems often struggle with dynamic user preferences and a vast array of products,leading to suboptimal user *** address this,our study presents a Personalized Adaptive Multi-Prod...
详细信息
Traditional e-commerce recommendation systems often struggle with dynamic user preferences and a vast array of products,leading to suboptimal user *** address this,our study presents a Personalized Adaptive Multi-Product Recommendation System(PAMR)leveraging transfer learning and Bi-GRU(Bidirectional Gated Recurrent Units).Using a large dataset of user reviews from Amazon and Flipkart,we employ transfer learning with pre-trained models(AlexNet,GoogleNet,ResNet-50)to extract high-level attributes from product data,ensuring effective feature representation even with limited ***-GRU captures both spatial and sequential dependencies in user-item *** innovation of this study lies in the innovative feature fusion technique that combines the strengths of multiple transfer learning models,and the integration of an attention mechanism within the Bi-GRU framework to prioritize relevant *** approach addresses the classic recommendation systems that often face challenges such as cold start along with data sparsity difficulties,by utilizing robust user and item *** model demonstrated an accuracy of up to 96.9%,with precision and an F1-score of 96.2%and 96.97%,respectively,on the Amazon dataset,significantly outperforming the baselines and marking a considerable advancement over traditional *** study highlights the effectiveness of combining transfer learning with Bi-GRU for scalable and adaptive recommendation systems,providing a versatile solution for real-world applications.
The Telecare Medicine Information System (TMIS) revolutionizes healthcare delivery by integrating medical equipment and sensors, facilitating proactive and cost-effective services. Accessible online, TMIS empowers pat...
详细信息
Alzheimer's disease is a common and complex brain disorder that primarily affects the elderly. Because it is progressing and has few effective therapies, it requires a thorough understanding of the condition;our s...
详细信息
The management of healthcare data has significantly benefited from the use of cloud-assisted MediVault for healthcare systems, which can offer patients efficient and convenient digital storage services for storin...
详细信息
Deep learning-based character recognition of Tamil inscriptions plays a significant role in preserving the ancient Tamil language. The complexity of the task lies in the precise classification of the age-old Tamil let...
详细信息
The Internet of Things (IoT) occupies the entire world in its hands. IoT devices have a resource-constrained nature known as Low Power and Lossy Networks (LLN). The Routing Protocol for Low Power and Lossy Networks (R...
详细信息
This article proposes a novel idea for creating a sentiment-based stock market index forecasting model by amalgamating price and sentiment data hidden in the price pattern itself. The state-of-the-art methodologies us...
详细信息
Pancreatic cancer's devastating impact and low survival rates call for improved detection methods. While Artificial Intelligence has shown remarkable progress, its increasing complexity has led to "black box&...
详细信息
暂无评论