Heart disease is a critical concern of healthcare for everyone in today’s era. An effective and noninvasive indication of heart disease is an electrocardiogram (ECG). Understanding regular ECG signal patterns and com...
详细信息
This research study analyzes the complex and dynamic field of real estate, aiming to reveal the numerous factors influencing home values. The primary objective of this research study is to develop a prediction system ...
详细信息
The immunity of multilayer perceptron (MLP) is less effective toward input noise. In this article, we have focused on the robustness of MLP with respect to input noise where noise can be additive or multiplicative. He...
详细信息
Today, machine learning is used in a broad variety of applications. Convolution neural networks (CNN), in particular, are widely used to analyze visual data. The fashion industry is catching up to the growing usage of...
详细信息
Modernization and intense industrialization have led to a substantial improvement in people’s quality of life. However, the aspiration for achieving an improved quality of life results in environmental contamination....
详细信息
Automatic skin lesion subtyping is a crucial step for diagnosing and treating skin cancer and acts as a first level diagnostic aid for medical experts. Although, in general, deep learning is very effective in image pr...
详细信息
Automatic skin lesion subtyping is a crucial step for diagnosing and treating skin cancer and acts as a first level diagnostic aid for medical experts. Although, in general, deep learning is very effective in image processing tasks, there are notable areas of the processing pipeline in the dermoscopic image regime that can benefit from refinement. Our work identifies two such areas for improvement. First, most benchmark dermoscopic datasets for skin cancers and lesions are highly imbalanced due to the relative rarity and commonality in the occurrence of specific lesion types. Deep learning methods tend to exhibit biased performance in favor of the majority classes with such datasets, leading to poor generalization. Second, dermoscopic images can be associated with irrelevant information in the form of skin color, hair, veins, etc.;hence, limiting the information available to a neural network by retaining only relevant portions of an input image has been successful in prompting the network towards learning task-relevant features and thereby improving its performance. Hence, this research work augments the skin lesion characterization pipeline in the following ways. First, it balances the dataset to overcome sample size biases. Two balancing methods, synthetic minority oversampling TEchnique (SMOTE) and Reweighting, are applied, compared, and analyzed. Second, a lesion segmentation stage is introduced before classification, in addition to a preprocessing stage, to retain only the region of interest. A baseline segmentation approach based on Bi-Directional ConvLSTM U-Net is improved using conditional adversarial training for enhanced segmentation performance. Finally, the classification stage is implemented using EfficientNets, where the B2 variant is used to benchmark and choose between the balancing and segmentation techniques, and the architecture is then scaled through to B7 to analyze the performance boost in lesion classification. From these experiments, we find
Summarizing lengthy text involves distilling crucial information into a concise form by covering the key events in the source text. Previous researchers mostly explored the supervised approaches for the task, but due ...
详细信息
Facial expression recognition is a challenging task when neural network is applied to pattern recognition. Most of the current recognition research is based on single source facial data, which generally has the disadv...
详细信息
In Taiwan, the current electricity prices for residential users remain relatively low. This results in a diminished incentive for these users to invest in energy-saving improvements. Consequently, devising strategies ...
详细信息
The variety of crops, differences in climate, and the multiplicity of disease symptoms make early identification and evaluation of leaf diseases a challenging task. Although deep-learning methods have been created for...
详细信息
暂无评论