In recent decades, brain tumors have been regarded as a severe illness that causes significant damage to the health of the individual, and finally it results to death. Hence, the Brain Tumor Segmentation and Classific...
详细信息
In recent decades, brain tumors have been regarded as a severe illness that causes significant damage to the health of the individual, and finally it results to death. Hence, the Brain Tumor Segmentation and Classification (BTSC) has gained more attention among researcher communities. BTSC is the process of finding brain tumor tissues and classifying the tissues based on the tumor types. Manual tumor segmentation from is prone to error and a time-consuming task. A precise and fast BTSC model is developed in this manuscript based on a transfer learning-based Convolutional Neural Networks (CNN) model. The utilization of a variant of CNN is because of its superiority in distinct tasks. In the initial phase, the Magnetic Resonance Imaging (MRI) brain images are acquired from the Brain Tumor Image Segmentation Challenge (BRATS) 2019, 2020 and 2021 databases. Then the image augmentation is performed on the gathered images by using zoom-in, rotation, zoom-out, flipping, scaling, and shifting methods that effectively reduce overfitting issues in the classification model. The augmented images are segmented using the layers of the Visual-Geometry-Group (VGG-19) model. Then feature extraction using An Attribute Aware Attention (AWA) methodology is carried out on the segmented images following the segmentation block in the VGG-19 model. The crucial features are then selected using the attribute category reciprocal attention phase. These features are inputted to the Model Agnostic Concept Extractor (MACE) to generate the relevance score between the features for assisting in the final classification process. The obtained relevance scores from the MACE are provided to the max-pooling layer of the VGG-19 model. Then, the final classified output is obtained from the modified VGG-19 architecture. The implemented Relevance score with the AWA-based VGG-19 model is used to classify the tumor as the whole tumor, enhanced tumor, and tumor core. In the classification section, the proposed
The surrounding environmental and climatic conditions have a significant impact on the utilisation of ecosystem services for recreational purposes. Climate change poses a threat to future natural leisure opportunities...
详细信息
In the realm of education, the pursuit of effective learning outcomes often faces the challenge of limited resources. This paper explores the intersection of maximizing learning outcomes and minimizing costs through a...
详细信息
The accurate and early detection of abnormalities in fundus images is crucial for the timely diagnosis and treatment of various eye diseases, such as glaucoma and diabetic retinopathy. The detection of abnormalities i...
详细信息
The accurate and early detection of abnormalities in fundus images is crucial for the timely diagnosis and treatment of various eye diseases, such as glaucoma and diabetic retinopathy. The detection of abnormalities in fundus images using traditional methods is often challenging due to high computational demands, scalability issues, and the requirement of large labeled datasets for effective training. To address these limitations, a new method called triplet-based orchard search (Triplet-OS) has been proposed in this paper. In this study, a GoogleNet (Inception) is utilized for feature extraction of fundus images. Also, the residual network is employed to detect abnormalities in fundus images. The Triplet-OS utilizes the medical imaging technique fundus photography dataset to capture detailed images of the interior surface of the eye, known as the fundus and the fundus includes the retina, optic disk, macula, and blood vessels. To enhance the performance of the Triplet-OS method, the orchard optimization algorithm has been implemented with an initial search strategy for hyperparameter optimization. The performance of the Triplet-OS method has been evaluated based on different metrics such as F1-score, specificity, AUC-ROC, recall, precision, and accuracy. Additionally, the performance of the proposed method has been compared with existing methods. Few-shot learning refers to a process where models can learn from just a small number of examples. This method has been applied to reduce the dependency on deep learning [1]. The goal is for machines to become as intelligent as humans. Today, numerous computing devices, extensive datasets, and advanced methods such as CNN and LSTM have been developed. AI has achieved human-like performance and, in many fields, surpasses human abilities. AI has become part of our daily lives, but it generally relies on large-scale data. In contrast, humans can often apply past knowledge to quickly learn new tasks [2]. For example, if given
Now-a-days, the generation of videos has increased dramatically due to the quick growth of multimedia and the internet. The need for effective ways to store, manage, and index the massive numbers of videos has become ...
详细信息
People-centric activity recognition is one of the most critical technologies in a wide range of real-world applications,including intelligent transportation systems, healthcare services, and brain-computer interfaces....
详细信息
People-centric activity recognition is one of the most critical technologies in a wide range of real-world applications,including intelligent transportation systems, healthcare services, and brain-computer interfaces. Large-scale data collection and annotation make the application of machine learning algorithms prohibitively expensive when adapting to new tasks. One way of circumventing this limitation is to train the model in a semi-supervised learning manner that utilizes a percentage of unlabeled data to reduce the labeling burden in prediction tasks. Despite their appeal, these models often assume that labeled and unlabeled data come from similar distributions, which leads to the domain shift problem caused by the presence of distribution gaps. To address these limitations, we propose herein a novel method for people-centric activity recognition,called domain generalization with semi-supervised learning(DGSSL), that effectively enhances the representation learning and domain alignment capabilities of a model. We first design a new autoregressive discriminator for adversarial training between unlabeled and labeled source domains, extracting domain-specific features to reduce the distribution gaps. Second, we introduce two reconstruction tasks to capture the task-specific features to avoid losing information related to representation learning while maintaining task-specific consistency. Finally, benefiting from the collaborative optimization of these two tasks, the model can accurately predict both the domain and category labels of the source domains for the classification task. We conduct extensive experiments on three real-world sensing datasets. The experimental results show that DGSSL surpasses the three state-of-the-art methods with better performance and generalization.
Online offensive behaviour continues to rise with the increasing popularity and use of social media. Various techniques have been used to address this issue. However, most existing studies consider offensive content i...
详细信息
Pneumonia is an infection often caused by several viral infections and prediction of pneumonia requires expertise from radiotherapists, posing challenges, especially in remote areas. Developing an automatic pneumonia ...
详细信息
Pesticides have become more necessary in modern agricultural ***,these pesticides have an unforeseeable long-term impact on people's wellbeing as well as the *** to a shortage of basic pesticide exposure awareness...
详细信息
Pesticides have become more necessary in modern agricultural ***,these pesticides have an unforeseeable long-term impact on people's wellbeing as well as the *** to a shortage of basic pesticide exposure awareness,farmers typically utilize pesticides extremely close to *** residues within foods,particularly fruits as well as veggies,are a significant issue among farmers,merchants,and particularly *** residual concentrations were far lower than these maximal allowable limits,with only a few surpassing the restrictions for such pesticides in *** is an obligation to provide a warning about this amount of pesticide use in *** technologies failed to forecast the large number of pesticides that were dangerous to people,necessitating the development of improved detection and early warning systems.A novel methodology for verifying the status and evaluating the level of pesticides in regularly consumed veggies as well as fruits has been identified,named as the Hybrid Chronic Multi-Residual Framework(HCMF),in which the harmful level of used pesticide residues has been predicted for contamination in agro products using Q-Learning based Recurrent Neural Network and the predicted contamination levels have been analyzed using Complex Event Processing(CEP)by processing given spatial and sequential *** analysis results are used to minimize and effectively use pesticides in the agricultural field and also ensure the safety of farmers and ***,the technique is carried out in a Python environment,with the results showing that the proposed model has a 98.57%accuracy and a training loss of 0.30.
In this paper, an evaluation strategy is proposed for evaluation of optimization algorithms, called the Complex Preference Analysis, that assesses the efficiency of different evolutionary algorithms by considering mul...
详细信息
暂无评论