Rapid urbanization has made road construction and maintenance imperative, but detecting road diseases has been time-consuming with limited accuracy. To overcome these challenges, we propose an efficient YOLOv7 road di...
详细信息
Artificial intelligence and disease detection go hand in hand. Convolutional neural networks, a significant area of artificial intelligence applications, are crucial in the detection of stomach cancer. AI’s significa...
详细信息
Advancements in digital technologies make it easy to modify the content of digital images. Hence, ensuring digital images' integrity and authenticity is necessary to protect them against various attacks that manip...
详细信息
Technology-enhanced learning has the potential to increase educational quality. In this study, we examine the integration of augmented reality (AR) technology in rural primary schools in India. We listed articles asso...
详细信息
The increasing global incidence of glioma tumors has raised significant healthcare concerns due to their high mortality rates. Traditionally, tumor diagnosis relies on visual analysis of medical imaging and invasive b...
详细信息
Background: Emotion is a strong feeling such as love, anger, fear, etc. Emotion can be recognized in two ways, i.e., External expression and Biomedical data-based. Nowadays, various research is occurring on emotion cl...
详细信息
Background: Emotion is a strong feeling such as love, anger, fear, etc. Emotion can be recognized in two ways, i.e., External expression and Biomedical data-based. Nowadays, various research is occurring on emotion classification with biomedical data. Aim: One of the most current studies in the medical sector, gaming-based applications, education sector, and many other domains is EEG-based emotion identification. The existing research on emotion recognition was published using models like KNN, RF Ensemble, SVM, CNN, and LSTM on biomedical EEG data. In general, only a few works have been published on ensemble or concatenation models for emotion recognition on EEG data and achieved better results than individual ones or a few machine learning approaches. Various papers have observed that CNN works better than other approaches for extracting features from the dataset, and LSTM works better on the sequence data. Methods: Our research is based on emotion recognition using EEG data, a mixed-model deep learning methodology, and its comparison with a machine learning mixed-model methodology. In this study, we introduced a mixed model using CNN and LSTM that classifies emotions in valence and arousal on the DEAP dataset with 14 channels across 32 people. Result and Discussion: We then compared it to SVM, KNN, and RF Ensemble, and concatenated these models with it. First preprocessed the raw data, then checked emotion classification using SVM, KNN, RF Ensemble, CNN, and LSTM individually. After that with the mixed model of CNN-LSTM, and SVM-KNN-RF Ensemble results are compared. Proposed model results have better accuracy as 80.70% in valence than individual ones with CNN, LSTM, SVM, KNN, RF Ensemble and concatenated models of SVM, KNN and RF Ensemble. Conclusion: Overall, this paper concludes a powerful technique for processing a range of EEG data is the combination of CNNs and LSTMs. Ensemble approach results show better performance in the case of valence at 80.70% and 78.24
This paper offers a deep learning approach for semantic satellite imagery segmentation utilizing a modified U-Net architecture. Leveraging a Dubai satellite imagery dataset, the model classifies six distinct land-use ...
详细信息
Artificial intelligence (AI) has emerged as a powerful tool in computational biology, where it is being used to analyze large datasets to detect difficult biological patterns. This has enabled the design of new drug m...
详细信息
In the contemporary era,the global expansion of electrical grids is propelled by various renewable energy sources(RESs).Efficient integration of stochastic RESs and optimal power flow(OPF)management are critical for n...
详细信息
In the contemporary era,the global expansion of electrical grids is propelled by various renewable energy sources(RESs).Efficient integration of stochastic RESs and optimal power flow(OPF)management are critical for network *** study introduces an innovative solution,the Gaussian Bare-Bones Levy Cheetah Optimizer(GBBLCO),addressing OPF challenges in power generation systems with stochastic *** primary objective is to minimize the total operating costs of RESs,considering four functions:overall operating costs,voltage deviation management,emissions reduction,voltage stability index(VSI)and power loss ***,a carbon tax is included in the objective function to reduce carbon *** scrutiny,using modified IEEE 30-bus and IEEE 118-bus systems,validates GBBLCO’s superior performance in achieving optimal *** results demonstrate GBBLCO’s efficacy in six optimization scenarios:total cost with valve point effects,total cost with emission and carbon tax,total cost with prohibited operating zones,active power loss optimization,voltage deviation optimization and enhancing voltage stability index(VSI).GBBLCO outperforms conventional techniques in each scenario,showcasing rapid convergence and superior solution ***,GBBLCO navigates complexities introduced by valve point effects,adapts to environmental constraints,optimizes costs while considering prohibited operating zones,minimizes active power losses,and optimizes voltage deviation by enhancing the voltage stability index(VSI)*** research significantly contributes to advancing OPF,emphasizing GBBLCO’s improved global search capabilities and ability to address challenges related to local *** emerges as a versatile and robust optimization tool for diverse challenges in power systems,offering a promising solution for the evolving needs of renewable energy-integrated power grids.
In the digital world, text data is produced in an unstructured manner across various communication channels. Extracting valuable information from such data with security is crucial and requires the development of tech...
详细信息
暂无评论