咨询与建议

限定检索结果

文献类型

  • 291 篇 期刊文献
  • 276 篇 会议
  • 2 册 图书

馆藏范围

  • 569 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 364 篇 工学
    • 222 篇 计算机科学与技术...
    • 165 篇 软件工程
    • 92 篇 信息与通信工程
    • 92 篇 生物医学工程(可授...
    • 80 篇 生物工程
    • 49 篇 控制科学与工程
    • 45 篇 电气工程
    • 43 篇 光学工程
    • 28 篇 电子科学与技术(可...
    • 25 篇 仪器科学与技术
    • 21 篇 化学工程与技术
    • 14 篇 机械工程
    • 14 篇 材料科学与工程(可...
    • 14 篇 土木工程
    • 13 篇 建筑学
  • 252 篇 理学
    • 112 篇 生物学
    • 95 篇 物理学
    • 86 篇 数学
    • 29 篇 统计学(可授理学、...
    • 23 篇 化学
    • 16 篇 系统科学
  • 93 篇 医学
    • 85 篇 临床医学
    • 60 篇 基础医学(可授医学...
    • 40 篇 药学(可授医学、理...
    • 12 篇 医学技术(可授医学...
    • 11 篇 特种医学
  • 74 篇 管理学
    • 39 篇 图书情报与档案管...
    • 36 篇 管理科学与工程(可...
  • 19 篇 法学
    • 19 篇 社会学
  • 14 篇 教育学
    • 12 篇 心理学(可授教育学...
  • 8 篇 农学
  • 7 篇 艺术学
  • 5 篇 文学
  • 2 篇 哲学
  • 1 篇 经济学
  • 1 篇 历史学

主题

  • 37 篇 electroencephalo...
  • 26 篇 feature extracti...
  • 20 篇 training
  • 15 篇 semantics
  • 13 篇 deep learning
  • 12 篇 brain computer i...
  • 12 篇 accuracy
  • 11 篇 speech enhanceme...
  • 11 篇 computational mo...
  • 10 篇 deep neural netw...
  • 10 篇 brain modeling
  • 10 篇 machine learning
  • 9 篇 neural networks
  • 9 篇 face recognition
  • 9 篇 speech recogniti...
  • 9 篇 artificial intel...
  • 8 篇 reinforcement le...
  • 8 篇 correlation
  • 7 篇 learning systems
  • 7 篇 image segmentati...

机构

  • 14 篇 department of br...
  • 14 篇 key laboratory o...
  • 12 篇 department of co...
  • 12 篇 department of br...
  • 11 篇 center for cogni...
  • 11 篇 department of br...
  • 9 篇 department of co...
  • 9 篇 key lab. of shan...
  • 7 篇 center for cogni...
  • 7 篇 brain and affect...
  • 6 篇 state key labora...
  • 6 篇 department of bi...
  • 6 篇 department of co...
  • 6 篇 university colle...
  • 6 篇 school of comput...
  • 6 篇 department of br...
  • 6 篇 center for brain...
  • 6 篇 dept. of brain a...
  • 6 篇 department of co...
  • 6 篇 center for cogni...

作者

  • 37 篇 wang deliang
  • 24 篇 müller klaus-rob...
  • 16 篇 seong-whan lee
  • 15 篇 lee seong-whan
  • 15 篇 yu kai
  • 11 篇 deliang wang
  • 10 篇 lu bao-liang
  • 10 篇 bao-liang lu
  • 9 篇 tenenbaum joshua...
  • 9 篇 samek wojciech
  • 9 篇 jain anil k.
  • 9 篇 wei-long zheng
  • 9 篇 chen lu
  • 9 篇 kai yu
  • 8 篇 zhao hai
  • 8 篇 montavon grégoir...
  • 7 篇 pandey ashutosh
  • 7 篇 wu si
  • 7 篇 miyapuram krishn...
  • 6 篇 tishby naftali

语言

  • 541 篇 英文
  • 26 篇 其他
  • 4 篇 中文
检索条件"机构=Computer Science and Engineering and Cognitive Science and Brain Science Programs"
569 条 记 录,以下是281-290 订阅
排序:
Learning, storing, and disentangling correlated patterns in neural networks  25th
Learning, storing, and disentangling correlated patterns in ...
收藏 引用
25th International Conference on Neural Information Processing, ICONIP 2018
作者: Zou, Xiaolong Ji, Zilong Liu, Xiao Huang, Tiejun Mi, Yuanyuan Wang, Dahui Wu, Si School of Electronics Engineering and Computer Science IDG/McGovern Institute for Brain Research Peking University Beijing100871 China State Key Laboratory of Cognitive Neuroscience & Learning Beijing Normal University Beijing100875 China Institute for Neurointelligence School of Medicine Chongqing University Chongqing China School of Systems Science Beijing Normal University Beijing100875 China
The brain encodes object relationship using correlated neural representations. Previous studies have revealed that it is a difficult task for neural networks to process correlated memory patterns;thus, strategies base... 详细信息
来源: 评论
A compositional object-based approach to learning physical dynamics  5
A compositional object-based approach to learning physical d...
收藏 引用
5th International Conference on Learning Representations, ICLR 2017
作者: Chang, Michael B. Ullman, Tomer Torralba, Antonio Tenenbaum, Joshua B. Department of Electrical Engineering and Computer Science MIT Department of Brain and Cognitive Sciences MIT
We present the Neural Physics Engine (NPE), a framework for learning simulators of intuitive physics that naturally generalize across variable object count and different scene configurations. We propose a factorizatio... 详细信息
来源: 评论
Artificial Intelligence for Dementia Research Methods Optimization
arXiv
收藏 引用
arXiv 2023年
作者: Bucholc, Magda James, Charlotte Al Khleifat, Ahmad Badhwar, AmanPreet Clarke, Natasha Dehsarvi, Amir Madan, Christopher R. Marzi, Sarah J. Shand, Cameron Schilder, Brian M. Tamburin, Stefano Tantiangco, Hanz M. Lourida, Ilianna Llewellyn, David J. Ranson, Janice M. Cognitive Analytics Research Lab School of Computing Engineering & Intelligent Systems Ulster University Derry United Kingdom NIHR Bristol Biomedical Research Centre University Hospitals Bristol Weston NHS Foundation Trust University of Bristol Bristol United Kingdom Department of Basic and Clinical Neuroscience Institute of Psychiatry Psychology & Neuroscience King's College London London United Kingdom Lab Centre de Recherche de l'Institut Universitaire de Gériatrie de Montréal Montréal Canada Institut de Génie Biomédical Université de Montréal Montréal Canada Département de Pharmacologie et Physiologie Université de Montréal Montréal Canada Aberdeen Biomedical Imaging Centre School of Medicine Medical Sciences and Nutrition University of Aberdeen Aberdeen United Kingdom School of Psychology University of Nottingham Nottingham United Kingdom UK Dementia Research Institute Imperial College London London United Kingdom Department of Brain Sciences Imperial College London London United Kingdom Centre for Medical Image Computing Department of Computer Science University College London London United Kingdom Department of Neurosciences Biomedicine and Movement Sciences University of Verona Verona Italy Information School University of Sheffield Sheffield United Kingdom University of Exeter Medical School Exeter United Kingdom The Alan Turing Institute London United Kingdom
Introduction: Machine learning (ML) has been extremely successful in identifying key features from high-dimensional datasets and executing complicated tasks with human expert levels of accuracy or greater. Methods: We... 详细信息
来源: 评论
Considerations and recommendations from the ISMRM Diffusion Study Group for preclinical diffusion MRI: Part 2 — Ex vivo imaging: added value and acquisition
arXiv
收藏 引用
arXiv 2022年
作者: Schilling, Kurt G. Grussu, Francesco Ianus, Andrada Hansen, Brian Howard, Amy F.D. Barrett, Rachel L.C. Aggarwal, Manisha Michielse, Stijn Nasrallah, Fatima Syeda, Warda Wang, Nian Veraart, Jelle Roebroeck, Alard Bagdasarian, Andrew F. Eichner, Cornelius Sepehrband, Farshid Zimmermann, Jan Soustelle, Lucas Bowman, Christien Tendler, Benjamin C. Hertanu, Andreea Jeurissen, Ben Verhoye, Marleen Frydman, Lucio de Looij, Yohan van Hike, David Dunn, Jeff F. Miller, Karla Landman, Bennett A. Shemesh, Noam Anderson, Adam McKinnon, Emilie Farquharson, Shawna Acqua, Flavio Dell Pierpaoli, Carlo Drobnjak, Ivana Leemans, Alexander Harkins, Kevin D. Descoteaux, Maxime Xu, Duan Huang, Hao Santin, Mathieu D. Grant, Samuel C. Obenaus, Andre Kim, Gene S. Wu, Dan Le Bihan, Denis Blackband, Stephen J. Ciobanu, Luisa Fieremans, Els Bai, Ruiliang Leergaard, Trygve B. Zhang, Jiangyang Dyrby, Tim B. Allan Johnson, G. Cohen-Adad, Julien Budde, Matthew D. Jelescu, Ileana O. Radiology and Radiological Sciences Vanderbilt University Medical Center NashvilleTN United States Vanderbilt University Institute of Imaging Science Vanderbilt University NashvilleTN United States Radiomics Group Vall d’Hebron Institute of Oncology Vall d’Hebron Barcelona Hospital Campus Barcelona Spain Queen Square MS Centre Queen Square Institute of Neurology Faculty of Brain Sciences University College London London United Kingdom Champalimaud Research Champalimaud Foundation Lisbon Portugal Center of Functionally Integrative Neuroscience Aarhus University Aarhus Denmark Department of Bioengineering Imperial College London London United Kingdom FMRIB Centre Wellcome Centre for Integrative Neuroimaging Nuffield Department of Clinical Neurosciences University of Oxford Oxford United Kingdom Department of Neuroimaging Institute of Psychiatry Psychology and Neuroscience King's College London London United Kingdom NatBrainLab Department of Forensics and Neurodevelopmental Sciences Institute of Psychiatry Psychology and Neuroscience King's College London London United Kingdom Russell H. Morgan Department of Radiology and Radiological Science Johns Hopkins University School of Medicine BaltimoreMD United States Maastricht University Medical Center Maastricht Netherlands The Queensland Brain Institute The University of Queensland Queensland Australia Melbourne Neuropsychiatry Centre The University of Melbourne ParkvilleVIC Australia Department of Radiology and Imaging Sciences Indiana University IN United States Stark Neurosciences Research Institute Indiana University School of Medicine IN United States Center for Biomedical Imaging NYU Grossman School of Medicine New YorkNY United States Faculty of psychology and Neuroscience Maastricht University Maastricht Netherlands Department of Chemical & Biomedical Engineering FAMU-FSU College of Engineering Florida State University TallahasseeFL United States Center for Interdisciplinary Magnetic Re
The value of preclinical diffusion MRI (dMRI) is substantial. While dMRI enables in vivo non-invasive characterization of tissue, ex vivo dMRI is increasingly being used to probe tissue microstructure and brain connec... 详细信息
来源: 评论
Considerations and Recommendations from the ISMRM Diffusion Study Group for preclinical diffusion MRI: Part 1 — In vivo small-animal imaging
arXiv
收藏 引用
arXiv 2022年
作者: Jelescu, Ileana O. Grussu, Francesco Ianus, Andrada Hansen, Brian Barrett, Rachel L.C. Aggarwal, Manisha Michielse, Stijn Nasrallah, Fatima Syeda, Warda Wang, Nian Veraart, Jelle Roebroeck, Alard Bagdasarian, Andrew F. Eichner, Cornelius Sepehrband, Farshid Zimmermann, Jan Soustelle, Lucas Bowman, Christien Tendler, Benjamin C. Hertanu, Andreea Jeurissen, Ben Verhoye, Marleen Frydman, Lucio de Looij, Yohan van Hike, David Dunn, Jeff F. Miller, Karla Landman, Bennett A. Shemesh, Noam Anderson, Adam McKinnon, Emilie Farquharson, Shawna Acqua, Flavio Dell Pierpaoli, Carlo Drobnjak, Ivana Leemans, Alexander Harkins, Kevin D. Descoteaux, Maxime Xu, Duan Huang, Hao Santin, Mathieu D. Grant, Samuel C. Obenaus, Andre Kim, Gene S. Wu, Dan Le Bihan, Denis Blackband, Stephen J. Ciobanu, Luisa Fieremans, Els Bai, Ruiliang Leergaard, Trygve B. Zhang, Jiangyang Dyrby, Tim B. Johnson, G. Allan Cohen-Adad, Julien Budde, Matthew D. Schilling, Kurt G. Department of Radiology Lausanne University Hospital University of Lausanne Lausanne Switzerland CIBM Center for Biomedical Imaging Ecole Polytechnique Fédérale de Lausanne Lausanne Switzerland Radiomics Group Vall d’Hebron Institute of Oncology Vall d’Hebron Barcelona Hospital Campus Barcelona Spain Queen Square MS Centre Queen Square Institute of Neurology Faculty of Brain Sciences University College London London United Kingdom Champalimaud Research Champalimaud Foundation Lisbon Portugal Center of Functionally Integrative Neuroscience Aarhus University Aarhus Denmark Department of Neuroimaging Institute of Psychiatry Psychology and Neuroscience King's College London London United Kingdom NatBrainLab Department of Forensics and Neurodevelopmental Sciences Institute of Psychiatry Psychology and Neuroscience King's College London London United Kingdom Russell H. Morgan Department of Radiology and Radiological Science Johns Hopkins University School of Medicine BaltimoreMD United States Maastricht University Medical Center Maastricht Netherlands The Queensland Brain Institute The University of Queensland Queensland Australia Melbourne Neuropsychiatry Centre The University of Melbourne ParkvilleVIC Australia Department of Radiology and Imaging Sciences Indiana University IN United States Stark Neurosciences Research Institute Indiana University School of Medicine IN United States Center for Biomedical Imaging NYU Grossman School of Medicine New YorkNY United States Faculty of psychology and Neuroscience Maastricht University Maastricht Netherlands Department of Chemical & Biomedical Engineering FAMU-FSU College of Engineering Florida State University TallahasseeFL United States Center for Interdisciplinary Magnetic Resonance National HIgh Magnetic Field Laboratory TallahasseeFL United States Department of Neuropsychology Max Planck Institute for Human Cognitive and Brain Sciences Leipzig Germany USC Stevens Neuroimaging and Informatics Instit
Small-animal diffusion MRI (dMRI) has been used for methodological development and validation, characterizing the biological basis of diffusion phenomena, and comparative anatomy. The steps from animal setup and monit... 详细信息
来源: 评论
Small P values may not yield robust findings:an example using REST-meta-PD
收藏 引用
science Bulletin 2021年 第21期66卷 2148-2152,M0003页
作者: Xi-Ze Jia Na Zhao Hao-Ming Dong Jia-Wei Sun Marek Barton Roxana Burciu Nicolas Carrière Antonio Cerasa Bo-Yu Chen Jun Chen Stephen Coombes Luc Defebvre Christine Delmaire Kathy Dujardin Fabrizio Esposito Guo-Guang Fan Federica Di Nardo Yi-Xuan Feng Brett W.Fling Saurabh Garg Moran Gilat Martin Gorges Shu-Leong Ho Fay BHorak Xiao Hu Xiao-Fei Hu Biao Huang Pei-Yu Huang Ze-Juan Jia Christina Jones Jan Kassubek Lenka Krajcovicova Ajay Kurani Jing Li Qing Li Ai-Ping Liu Bo Liu Hu Liu Wei-Guo Liu Renaud Lopes Yu-Ting Lou Wei Luo Tara Madhyastha Ni-Ni Mao Grainne McAlonan Martin J.McKeown Shirley Pang Andrea Quattrone Irena Rektorova Alessia Sarica Hui-Fang Shang James M.Shine Priyank Shukla Tomas Slavicek Xiao-Peng Song Gioacchino Tedeschi Alessandro Tessitore David Vaillancourt Jian Wang Jue Wang Z.Jane Wang Lu-Qing Wei Xia Wu Xiao-Jun Xu Lei Yan Jing Yang Wan-Qun Yang Nai-Lin Yao De-Long Zhang Jiu-Quan Zhang Min-Ming Zhang Yan-Ling Zhang Cai-Hong Zhou Chao-Gan Yan Xi-Nian Zuo Mark Hallett Tao Wu Yu-Feng Zang Center for Cognition and Brain Disorders the Affiliated HospitalHangzhou Normal UniversityHangzhou 310015China Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments Hangzhou 311121China National Basic Science Data Center Beijing 100190China State Key Laboratory of Cognitive Neuroscience and Learning&McGovern Institute for Brain Research Beijing Normal UniversityBeijing 100875China School of Information and Electronics Technology Jiamusi UniversityJiamusi 154007China Neuroscience Program Central European Institute of TechnologyCEITECMasaryk UniversityBrno 62500Czech Republic Department of Applied Physiology and Kinesiology University of FloridaGainesville FL 32611USA Univ.Lille InsermCHU LilleU1172-LilNCog-Lille Neuroscience&CognitionLille F-59000France The Institute for Biomedical Research and Innovation National Research CouncilMangone CS 87050Italy Department of Radiology The First Affiliated Hospital of China Medical UniversityShenyang 110001China Department of Radiology Guangdong Provincial Hospital of Chinese MedicineGuangzhou 510120China Department of Medicine Surgery and DentistryScuola Medica SalernitanaUniversity of SalernoFiscianoSA 132-84084Italy Department of Advanced Medical and Surgery Sciences University of Campania“Luigi Vanvitelli”Caserta 81100Italy Eye Center of the 2nd Affiliated Hospital Medical College of Zhejiang UniversityHangzhou 310020China Zhejiang Provincial Key Lab of Ophthalmology Hangzhou 310020China Department of Health and Exercise Science Colorado State UniversityFort Collins CO 80523USA Pacific Parkinson’s Research Centre University of British ColumbiaVancouver BC V6E 2M6Canada Department of Medicine(Neurology)University of British Columbia Vancouver BC V6T 1B7Canada Brain and Mind Center The University of SydneySydney NSW 2006Australia Department of Neurology Ulm UniversityUlm 89081Germany Division of Neurology Department of MedicineQueen Mary HospitalUniversity of Hong KongHong Kong 999077China Department of
Thousands of resting state functional magnetic resonance imaging(RS-f MRI)articles have been published on brain *** precise localization of abnormal brain activity,a voxel-level comparison is *** of the large number o... 详细信息
来源: 评论
Population-guided large margin classifier for high-dimension low -sample-size problems
arXiv
收藏 引用
arXiv 2019年
作者: Yin, Qingbo Adeli, Ehsan Shen, Liran Shen, Dinggang College of Information Science and Technology Dalian Maritime University Dalian116023 China Department of Radiology and BRIC University of North Carolina Chapel HillNC27599 United States Departments of Psychiatry & Behavioral Sciences and Computer Science Stanford University StanfordCA94305-5723 United States College of Marine Electrical Engineering Dalian Maritime University Dalian116023 China Department of Brain and Cognitive Engineering Korea University Seoul02841 Korea Republic of
Various applications in different fields, such as gene expression analysis or computer vision, suffer from data sets with high-dimensional low-sample-size (HDLSS), which has posed significant challenges for standard s... 详细信息
来源: 评论
Multimodal emotion recognition using deep canonical correlation analysis
arXiv
收藏 引用
arXiv 2019年
作者: Liu, Wei Qiu, Jie-Lin Zheng, Wei-Long Lu, Bao-Liang Center for Brain-Like Computing and Machine Intelligence Department of Computer Science and Engineering Shanghai Jiao Tong University Shanghai200240 China Key Laboratory of Shanghai Education Commission for Intelligent Interaction and Cognitive Engineering Shanghai Jiao Tong University Shanghai200240 China Brain Science and Technology Research Center Shanghai Jiao Tong University Shanghai200240 China Department of Electronic Engineering Shanghai Jiao Tong University Shanghai200240 China Department of Neurology Massachusetts General Hospital Harvard Medical School BostonMA02114 United States
Multimodal signals are more powerful than unimodal data for emotion recognition since they can represent emotions more comprehensively. In this paper, we introduce deep canonical correlation analysis (DCCA) to multimo... 详细信息
来源: 评论
Neural information processing in hierarchical prototypical networks  25th
Neural information processing in hierarchical prototypical n...
收藏 引用
25th International Conference on Neural Information Processing, ICONIP 2018
作者: Ji, Zilong Zou, Xiaolong Liu, Xiao Huang, Tiejun Mi, Yuanyuan Wu, Si State Key Laboratory of Cognitive Neuroscience and Learning Beijing Normal University Beijing100875 China School of Electronics Engineering and Computer Science IDG/McGovern Institute for Brain Research Peking University Beijing100871 China Institute for Neurointelligence School of Medicine Chongqing University Chongqing China
Prototypical networks (PTNs), which classify unseen data points according to their distances to the prototypes of classes, are a promising model to solve the few-shot learning problem. Mimicking the characteristics of... 详细信息
来源: 评论
FOCAL KL-DIVERGENCE BASED DILATED CONVOLUTIONAL NEURAL NETWORKS FOR CO-CHANNEL SPEAKER IDENTIFICATION
FOCAL KL-DIVERGENCE BASED DILATED CONVOLUTIONAL NEURAL NETWO...
收藏 引用
IEEE International Conference on Acoustics, Speech and Signal Processing
作者: Shuai Wang Yanmin Qian Kai Yu Key Laboratory of Shanghai Education Commission for Intelligent Interaction and Cognitive Engineering SpeechLab Department of Computer Science and Engineering Brain Science and Technology Research Center Shanghai Jiao Tong University Shanghai China
Recognizing the identities of multiple talkers via their overlapped speech is a challenging task, it is also one main difficulty for the "cocktail party problem". In this paper, a novel dilated convolutional... 详细信息
来源: 评论