Accidents caused by drivers who exhibit unusual behavior are putting road safety at ever-greater risk. When one or more vehicle nodes behave in this way, it can put other nodes in danger and result in potentially cata...
详细信息
Advancements in smart applications highlight the need for increased processing and storage capacity at Smart Devices (SDs). To tackle this, Edge computing (EC) is enabled to offload SD workloads to distant edge server...
详细信息
Photo sensing capability of an artificial synaptic device make it more valuable for brain-inspired computing systems, which can conquer the von Neumann bottleneck. In this letter, Ba0.7 Sr0.3 TiO3 (BST) based single l...
详细信息
Semi-supervised learning (SSL) aims to reduce reliance on labeled data. Achieving high performance often requires more complex algorithms, therefore, generic SSL algorithms are less effective when it comes to image cl...
详细信息
作者:
Zjavka, LadislavDepartment of Computer Science
Faculty of Electrical Engineering and Computer Science VŠB-Technical University of Ostrava 17. Listopadu 15/2172 Ostrava Czech Republic
Photovoltaic (PV) power is generated by two common types of solar components that are primarily affected by fluctuations and development in cloud structures as a result of uncertain and chaotic processes. Local PV for...
详细信息
Photovoltaic (PV) power is generated by two common types of solar components that are primarily affected by fluctuations and development in cloud structures as a result of uncertain and chaotic processes. Local PV forecasting is unavoidable in supply and load planning necessary in integration of smart systems into electrical grids. Intra- or day-ahead modelling of weather patterns based on Artificial Intelligence (AI) allows one to refine available 24 h. cloudiness forecast or predict PV production at a particular plant location during the day. AI usually gets an adequate prediction quality in shorter-level horizons, using the historical meteo- and PV record series as compared to Numerical Weather Prediction (NWP) systems. NWP models are produced every 6 h to simulate grid motion of local cloudiness, which is additionally delayed and usually scaled in a rough less operational applicability. Differential Neural Network (DNN) is based on a newly developed neurocomputing strategy that allows the representation of complex weather patterns analogous to NWP. DNN parses the n-variable linear Partial Differential Equation (PDE), which describes the ground-level patterns, into sub-PDE modules of a determined order at each node. Their derivatives are substituted by the Laplace transforms and solved using adapted inverse operations of Operation Calculus (OC). DNN fuses OC mathematics with neural computing in evolution 2-input node structures to form sum modules of selected PDEs added step-by-step to the expanded composite model. The AI multi- 1…9-h and one-stage 24-h models were evolved using spatio-temporal data in the preidentified daily learning sequences according to the applied input–output data delay to predict the Clear Sky Index (CSI). The prediction results of both statistical schemes were evaluated to assess the performance of the AI models. Intraday models obtain slightly better prediction accuracy in average errors compared to those applied in the second-day-ahead
Unstructured Numerical Image Dataset Separation (UNIDS) method employing an enhanced unsupervised clustering technique. The objective is to delineate an optimal number of distinct groups within the input grayscale (G-...
详细信息
Delay/disruption tolerant networking(DTN) is proposed as a networking architecture to overcome challenging space communication characteristics for reliable data transmission service in presence of long propagation del...
详细信息
Delay/disruption tolerant networking(DTN) is proposed as a networking architecture to overcome challenging space communication characteristics for reliable data transmission service in presence of long propagation delays and/or lengthy link disruptions. Bundle protocol(BP) and Licklider Transmission Protocol(LTP) are the main key technologies for DTN. LTP red transmission offers a reliable transmission mechanism for space networks. One of the key metrics used to measure the performance of LTP in space applications is the end-to-end data delivery delay, which is influenced by factors such as the quality of spatial channels and the size of cross-layer packets. In this paper, an end-to-end reliable data delivery delay model of LTP red transmission is proposed using a roulette wheel algorithm, and the roulette wheel algorithm is more in line with the typical random characteristics in space networks. The proposed models are validated through real data transmission experiments on a semi-physical testing platform. Furthermore, the impact of cross-layer packet size on the performance of LTP reliable transmission is analyzed, with a focus on bundle size, block size, and segment size. The analysis and study results presented in this paper offer valuable contributions towards enhancing the reliability of LTP transmission in space communication scenarios.
Nowadays, the Internet of Things (IoT) plays a significant role in the development of various real-life applications such as smart cities, healthcare, precision agriculture, and industrial automation. Wireless Sensor ...
详细信息
Cancer remains a leading cause of mortality worldwide, with early detection and accurate diagnosis critical to improving patient outcomes. While computer-aided diagnosis systems powered by deep learning have shown con...
详细信息
In this paper,we analyze a hybrid Heterogeneous Cellular Network(HCNet)framework by deploying millimeter Wave(mmWave)small cells with coexisting traditional sub-6GHz macro cells to achieve improved coverage and high d...
详细信息
In this paper,we analyze a hybrid Heterogeneous Cellular Network(HCNet)framework by deploying millimeter Wave(mmWave)small cells with coexisting traditional sub-6GHz macro cells to achieve improved coverage and high data *** consider randomly-deployed macro base stations throughout the network whereas mmWave Small Base Stations(SBSs)are deployed in the areas with high User Equipment(UE)*** user centric deployment of mmWave SBSs inevitably incurs correlation between UE and *** a realistic scenario where the UEs are distributed according to Poisson cluster process and directional beamforming with line-of-sight and non-line-of-sight transmissions is adopted for mmWave *** using tools from stochastic geometry,we develop an analytical framework to analyze various performance metrics in the downlink hybrid HCNets under biased received power *** UE clustering we considered Thomas cluster process and derive expressions for the association probability,coverage probability,area spectral efficiency,and energy *** also provide Monte Carlo simulation results to validate the accuracy of the derived ***,we analyze the impact of mmWave operating frequency,antenna gain,small cell biasing,and BSs density to get useful engineering insights into the performance of hybrid mmWave *** results show that network performance is significantly improved by deploying millimeter wave SBS instead of microwave BS in hot spots.
暂无评论