In the rapidly advancing era of educational technology, customized learning materials have the potential to enhance individuals’ learning capacities. This research endeavors to devise an effective method for detectin...
详细信息
In the rapidly advancing era of educational technology, customized learning materials have the potential to enhance individuals’ learning capacities. This research endeavors to devise an effective method for detecting a learner's preferred learning style and subsequently adapting the learning content to align with that style, utilizing artificial intelligence AI techniques. Our investigation finds that analyzing learners’ web tracking logs for activity classification and categorizing individual responses for feedback classification are highly effective methods for identifying a learner's learning styles, such as visual, auditory, and kinesthetic. A custom dataset has been constructed in this research comprising approximately 506 samples and 22 features utilizing the Moodle learning management system (LMS), successfully categorizing students into their respective learning styles. Furthermore, decision tree, random forest, support vector machine (SVM), logistic regression, XGBoost, blending ensemble, and convolutional neural network (CNN) algorithms with corresponding optimized hyperparameters and synthetic minority oversampling technique (SMOTE) have been applied for learning behavior classification. The blending ensemble technique with the XGBoost meta-learning model accomplished the best performance for learning style detection with an accuracy of 97.56%. Next, the text content of the electronic documents is modified by employing different natural language processing (NLP) techniques, including named entity recognition of spaCy, knowledge graph, generative pre-trained transformer 3 (GPT-3), and text-to-text transfer transformer (T5) model, to accommodate diverse learning styles. Various approaches, such as color coding, audio scripts, mind maps, flashcards, etc., are implemented to adapt the content effectively for the detected categories of learners. The spaCy NLP-based named entity recognition (NER) model demonstrates a 94.16% F1 score and 0.92 exact match ratio
Traffic light recognition in autonomous driving is an essential but very challenging task because its performance is affected by unpredictable environmental conditions. Moreover, the shapes and installations of traffi...
详细信息
Traditional Global Positioning System(GPS)technology,with its high power consumption and limited perfor-mance in obstructed environments,is unsuitable for many Internet of Things(IoT)*** paper explores LoRa as an alte...
详细信息
Traditional Global Positioning System(GPS)technology,with its high power consumption and limited perfor-mance in obstructed environments,is unsuitable for many Internet of Things(IoT)*** paper explores LoRa as an alternative localization technology,leveraging its low power consumption,robust indoor penetration,and extensive coverage area,which render it highly suitable for diverse IoT *** comprehensively review several LoRa-based localization techniques,including time of arrival(ToA),time difference of arrival(TDoA),round trip time(RTT),received signal strength indicator(RSSI),and fingerprinting *** this review,we evaluate the strengths and limitations of each technique and investigate hybrid models to potentially improve positioning *** studies in smart cities,agriculture,and logistics exemplify the versatility of LoRa for indoor and outdoor *** findings demonstrate that LoRa technology not only overcomes the limitations of GPS regarding power consumption and coverage but also enhances the scalability and efficiency of IoT deployments in complex environments.
In pursuit of enhancing the Wireless Sensor Networks(WSNs)energy efficiency and operational lifespan,this paper delves into the domain of energy-efficient routing ***,the limited energy resources of Sensor Nodes(SNs)a...
详细信息
In pursuit of enhancing the Wireless Sensor Networks(WSNs)energy efficiency and operational lifespan,this paper delves into the domain of energy-efficient routing ***,the limited energy resources of Sensor Nodes(SNs)are a big challenge for ensuring their efficient and reliable *** data gathering involves the utilization of a mobile sink(MS)to mitigate the energy consumption problem through periodic network *** mobile sink(MS)strategy minimizes energy consumption and latency by visiting the fewest nodes or predetermined locations called rendezvous points(RPs)instead of all cluster heads(CHs).CHs subsequently transmit packets to neighboring *** unique determination of this study is the shortest path to reach *** the mobile sink(MS)concept has emerged as a promising solution to the energy consumption problem in WSNs,caused by multi-hop data collection with static *** this study,we proposed two novel hybrid algorithms,namely“ Reduced k-means based on Artificial Neural Network”(RkM-ANN)and“Delay Bound Reduced kmeans with ANN”(DBRkM-ANN)for designing a fast,efficient,and most proficient MS path depending upon rendezvous points(RPs).The first algorithm optimizes the MS’s latency,while the second considers the designing of delay-bound paths,also defined as the number of paths with delay over bound for the *** methods use a weight function and k-means clustering to choose RPs in a way that maximizes efficiency and guarantees network-wide *** addition,a method of using MS scheduling for efficient data collection is *** simulations and comparisons to several existing algorithms have shown the effectiveness of the suggested methodologies over a wide range of performance indicators.
The performance of camera-based place recognition has significantly improved with the rapid advancement of deep learning. However, RGB cameras still face challenges in handling variations in lighting conditions due to...
详细信息
One of the most popular techniques for changing the purpose of an image or resizing a digital image with content awareness is the seam-carving method. The performance of image resizing algorithms based on seam machini...
详细信息
In multilevel inverters, unused energies are created due to the asynchronous use of the input DC-sources. This means that when the input DC-sources are replaced by renewable systems such as photovoltaic arrays, some o...
详细信息
Semantic segmentation is an important sub-task for many ***,pixel-level ground-truth labeling is costly,and there is a tendency to overfit to training data,thereby limiting the generalization *** domain adaptation can...
详细信息
Semantic segmentation is an important sub-task for many ***,pixel-level ground-truth labeling is costly,and there is a tendency to overfit to training data,thereby limiting the generalization *** domain adaptation can potentially address these problems by allowing systems trained on labelled datasets from the source domain(including less expensive synthetic domain)to be adapted to a novel target *** conventional approach involves automatic extraction and alignment of the representations of source and target domains *** limitation of this approach is that it tends to neglect the differences between classes:representations of certain classes can be more easily extracted and aligned between the source and target domains than others,limiting the adaptation over all ***,we address:this problem by introducing a Class-Conditional Domain Adaptation(CCDA)*** incorporates a class-conditional multi-scale discriminator and class-conditional losses for both segmentation and ***,they measure the segmentation,shift the domain in a classconditional manner,and equalize the loss over *** results demonstrate that the performance of our CCDA method matches,and in some cases,surpasses that of state-of-the-art methods.
With the rapid expansion of interactions across various domains such as knowledge graphs and social networks, anomaly detection in dynamic graphs has become increasingly critical for mitigating potential risks. Howeve...
详细信息
Most research works nowadays deal with real-time Internetof Things (IoT) data. However, with exponential data volume increases,organizations need help storing such humongous amounts of IoT data incloud storage systems...
详细信息
Most research works nowadays deal with real-time Internetof Things (IoT) data. However, with exponential data volume increases,organizations need help storing such humongous amounts of IoT data incloud storage systems. Moreover, such systems create security issues whileefficiently using IoT and Cloud Computing technologies. Ciphertext-Policy Attribute-Based Encryption (CP-ABE) has the potential to make IoT datamore secure and reliable in various cloud storage services. Cloud-assisted IoTssuffer from two privacy issues: access policies (public) and super polynomialdecryption times (attributed mainly to complex access structures). We havedeveloped a CP-ABE scheme in alignment with a Hidden HierarchyCiphertext-Policy Attribute-Based Encryption (HH-CP-ABE) access structure embedded within two policies, i.e., public policy and sensitive *** this proposed scheme, information is only revealed when the user’sinformation is satisfactory to the public policy. Furthermore, the proposedscheme applies to resource-constrained devices already contracted tasks totrusted servers (especially encryption/decryption/searching). Implementingthe method and keywords search resulted in higher access policy privacy andincreased security. The new scheme introduces superior storage in comparisonto existing systems (CP-ABE, H-CP-ABE), while also decreasing storage costsin HH-CP-ABE. Furthermore, a reduction in time for key generation canalso be ***, the scheme proved secure, even in handling IoT datathreats in the Decisional Bilinear Diffie-Hellman (DBDH) case.
暂无评论