With the development of information technology and cloud computing,data sharing has become an important part of scientific *** traditional data sharing,data is stored on a third-party storage platform,which causes the...
详细信息
With the development of information technology and cloud computing,data sharing has become an important part of scientific *** traditional data sharing,data is stored on a third-party storage platform,which causes the owner to lose control of the *** a result,there are issues of intentional data leakage and tampering by third parties,and the private information contained in the data may lead to more significant ***,data is frequently maintained on multiple storage platforms,posing significant hurdles in terms of enlisting multiple parties to engage in data sharing while maintaining *** this work,we propose a new architecture for applying blockchains to data sharing and achieve efficient and reliable data sharing among heterogeneous *** design a new data sharing transaction mechanism based on the system architecture to protect the security of the raw data and the processing *** also design and implement a hybrid concurrency control protocol to overcome issues caused by the large differences in blockchain performance in our system and to improve the success rate of data sharing *** took Ethereum and Hyperledger Fabric as examples to conduct crossblockchain data sharing *** results show that our system achieves data sharing across heterogeneous blockchains with reasonable performance and has high scalability.
Acute Bilirubin Encephalopathy(ABE)is a significant threat to neonates and it leads to disability and high mortality *** and treating ABE promptly is important to prevent further complications and long-term *** studie...
详细信息
Acute Bilirubin Encephalopathy(ABE)is a significant threat to neonates and it leads to disability and high mortality *** and treating ABE promptly is important to prevent further complications and long-term *** studies have explored ABE ***,they often face limitations in classification due to reliance on a single modality of Magnetic Resonance Imaging(MRI).To tackle this problem,the authors propose a Tri-M2MT model for precise ABE detection by using tri-modality MRI *** scans include T1-weighted imaging(T1WI),T2-weighted imaging(T2WI),and apparent diffusion coefficient maps to get indepth ***,the tri-modality MRI scans are collected and preprocessesed by using an Advanced Gaussian Filter for noise reduction and Z-score normalisation for data *** Advanced Capsule Network was utilised to extract relevant features by using Snake Optimization Algorithm to select optimal features based on feature correlation with the aim of minimising complexity and enhancing detection ***,a multi-transformer approach was used for feature fusion and identify feature correlations ***,accurate ABE diagnosis is achieved through the utilisation of a SoftMax *** performance of the proposed Tri-M2MT model is evaluated across various metrics,including accuracy,specificity,sensitivity,F1-score,and ROC curve analysis,and the proposed methodology provides better performance compared to existing methodologies.
Protein structure prediction is one of the main research areas in the field of Bio-informatics. The importance of proteins in drug design attracts researchers for finding the accurate tertiary structure of the protein...
详细信息
The segmentation of head and neck(H&N)tumors in dual Positron Emission Tomography/Computed Tomogra-phy(PET/CT)imaging is a critical task in medical imaging,providing essential information for diagnosis,treatment p...
详细信息
The segmentation of head and neck(H&N)tumors in dual Positron Emission Tomography/Computed Tomogra-phy(PET/CT)imaging is a critical task in medical imaging,providing essential information for diagnosis,treatment planning,and outcome *** by the need for more accurate and robust segmentation methods,this study addresses key research gaps in the application of deep learning techniques to multimodal medical ***,it investigates the limitations of existing 2D and 3D models in capturing complex tumor structures and proposes an innovative 2.5D UNet Transformer model as a *** primary research questions guiding this study are:(1)How can the integration of convolutional neural networks(CNNs)and transformer networks enhance segmentation accuracy in dual PET/CT imaging?(2)What are the comparative advantages of 2D,2.5D,and 3D model configurations in this context?To answer these questions,we aimed to develop and evaluate advanced deep-learning models that leverage the strengths of both CNNs and *** proposed methodology involved a comprehensive preprocessing pipeline,including normalization,contrast enhancement,and resampling,followed by segmentation using 2D,2.5D,and 3D UNet Transformer *** models were trained and tested on three diverse datasets:HeckTor2022,AutoPET2023,and *** was assessed using metrics such as Dice Similarity Coefficient,Jaccard Index,Average Surface Distance(ASD),and Relative Absolute Volume Difference(RAVD).The findings demonstrate that the 2.5D UNet Transformer model consistently outperformed the 2D and 3D models across most metrics,achieving the highest Dice and Jaccard values,indicating superior segmentation *** instance,on the HeckTor2022 dataset,the 2.5D model achieved a Dice score of 81.777 and a Jaccard index of 0.705,surpassing other model *** 3D model showed strong boundary delineation performance but exhibited variability across datasets,while the
Recently, multirobot systems(MRSs) have found extensive applications across various domains, including industrial manufacturing, collaborative formation of unmanned equipment, emergency disaster relief, and war scenar...
详细信息
Recently, multirobot systems(MRSs) have found extensive applications across various domains, including industrial manufacturing, collaborative formation of unmanned equipment, emergency disaster relief, and war scenarios [1]. These advancements are largely supported by the development of consistency control theory. However, traditional dynamicsfree models may cause instability in complex robotic systems. Lagrangian dynamics offers a better approach for modeling these systems, as it facilitates controller design and optimization analysis. Despite this, challenges persist with unknown parameters and nonlinear friction within the systems.
In the burgeoning field of anomaly detection within attributed networks, traditional methodologies often encounter the intricacies of network complexity, particularly in capturing nonlinearity and sparsity. This study...
详细信息
Even though various features have been investigated in the detection of figurative language, oxymoron features have not been considered in the classification of sarcastic content. The main objective of this work is to...
详细信息
We present a novel framework for the multidomain synthesis of artworks from semantic *** of the main limitations of this challenging task is the lack of publicly available segmentation datasets for art *** address thi...
详细信息
We present a novel framework for the multidomain synthesis of artworks from semantic *** of the main limitations of this challenging task is the lack of publicly available segmentation datasets for art *** address this problem,we propose a dataset called ArtSem that contains 40,000 images of artwork from four different domains,with their corresponding semantic label *** first extracted semantic maps from landscape photography and used a conditional generative adversarial network(GAN)-based approach for generating high-quality artwork from semantic maps without requiring paired training ***,we propose an artwork-synthesis model using domain-dependent variational encoders for high-quality multi-domain ***,the model was improved and complemented with a simple but effective normalization method based on jointly normalizing semantics and style,which we call spatially style-adaptive normalization(SSTAN).Compared to the previous methods,which only take semantic layout as the input,our model jointly learns style and semantic information representation,improving the generation quality of artistic *** results indicate that our model learned to separate the domains in the latent ***,we can perform fine-grained control of the synthesized artwork by identifying hyperplanes that separate the different ***,by combining the proposed dataset and approach,we generated user-controllable artworks of higher quality than that of existing approaches,as corroborated by quantitative metrics and a user study.
This work focuses on the problem of distributed optimization in multi-agent cyberphysical systems, where a legitimate agent's iterates are influenced both by the values it receives from potentially malicious neigh...
详细信息
暂无评论