Partial-label learning(PLL) is a typical problem of weakly supervised learning, where each training instance is annotated with a set of candidate labels. Self-training PLL models achieve state-of-the-art performance b...
详细信息
Partial-label learning(PLL) is a typical problem of weakly supervised learning, where each training instance is annotated with a set of candidate labels. Self-training PLL models achieve state-of-the-art performance but suffer from error accumulation problems caused by mistakenly disambiguated instances. Although co-training can alleviate this issue by training two networks simultaneously and allowing them to interact with each other, most existing co-training methods train two structurally identical networks with the same task, i.e., are symmetric, rendering it insufficient for them to correct each other due to their similar limitations. Therefore, in this paper, we propose an asymmetric dual-task co-training PLL model called AsyCo,which forces its two networks, i.e., a disambiguation network and an auxiliary network, to learn from different views explicitly by optimizing distinct tasks. Specifically, the disambiguation network is trained with a self-training PLL task to learn label confidence, while the auxiliary network is trained in a supervised learning paradigm to learn from the noisy pairwise similarity labels that are constructed according to the learned label confidence. Finally, the error accumulation problem is mitigated via information distillation and confidence refinement. Extensive experiments on both uniform and instance-dependent partially labeled datasets demonstrate the effectiveness of AsyCo.
electrical system planning of the large-scale offshore wind farm is usually based on N-1 security for equipment lectotype. However, in this method, owing to the aggregation effect in large-scale offshore wind farms, o...
详细信息
electrical system planning of the large-scale offshore wind farm is usually based on N-1 security for equipment lectotype. However, in this method, owing to the aggregation effect in large-scale offshore wind farms, offshore electrical equipment operates under low load for long periods, thus wasting resources. In this paper, we propose a method for electrical system planning of the large-scale offshore wind farm based on the N+ design. A planning model based on the power-limited operation of wind turbines under the N+ design is constructed, and a solution is derived with the optimization of the upper power limits of wind turbines. A comprehensive evaluation and game analysis of the economy, risk of wind abandonment, and environmental sustainability of the planned offshore electrical systems have been conducted. Moreover, the planning of an infield collector system, substation, and transmission system of an offshore electrical system based on the N+ design is integrated. For a domestic offshore wind farm, evaluation results show that the proposed planning method can improve the efficiency of wind energy utilization while greatly reducing the investment cost of the electrical system.
This study focuses on creating an accurate reflection prediction model that will guide the design of filters with multilayer Anti-Reflection Coating (ARC) to optimize the thickness parameters using Machine Learning (M...
详细信息
This study focuses on creating an accurate reflection prediction model that will guide the design of filters with multilayer Anti-Reflection Coating (ARC) to optimize the thickness parameters using Machine Learning (ML) and Deep Learning (DL) techniques. This model aims to shed light on the design process of a multilayer optical filter, making it more cost-effective by providing faster and more precise production. In creating this model, a dataset containing data obtained from 3000 (1500 Ge–Al2O3, 1500 Ge–SiO2) simulations previously performed on a computer based on the thicknesses of multilayer structural materials was used. The data are generated using Computational Electromagnetic simulation software based on the Finite-Difference Time-Domain method. To understand the mechanism of the proposed model, two different two-layer coating simulations were studied. While Ge was used as the substrate in both coatings, Al2O3 and SiO2 were used as the second layers. The data set consists of the 3–5 µm and 8–12 µm bands typical for the mid-wave infrared (MWIR) and long-wave infrared (LWIR) bands and includes reflectance values for wavelengths ranging between these spectra. In the specified 2-layer data set, the average reflectance was obtained with a minimum of 0.36 at 515 nm Ge and 910 nm SiO2 thicknesses. This value can be increased by adapting the proposed model to more than 2 layers. Six ML algorithms and a DL model, including artificial neural networks and convolutional neural networks, are evaluated to determine the most effective approach for predicting reflectance properties. Furthermore, in the proposed model, a hyperparameter tuning phase is used in the study to compare the efficiency of ML and DL methods to generate dual-band ARC and maximize the prediction accuracy of the DL algorithm. To our knowledge, this is the first time this has been implemented in this field. The results show that ML models, particularly decision tree (MSE: 0.00000069, RMSE: 0.00083), rand
In this paper, we propose a novel volumetric video caching and rendering approach for an edge-assisted extended reality (XR) system to enhance user quality of experience (QoE). Particularly, user QoE consists of visua...
详细信息
To enhance the capability of classifying and localizing defects on the surface of hot-rolled strips, this paper proposed an algorithm based on YOLOv7 to improve defect detection. The BI-SPPFCSPC structure was incorpor...
详细信息
Heart monitoring improves life ***(ECGs or EKGs)detect heart *** learning algorithms can create a few ECG diagnosis processing *** first method uses raw ECG and time-series *** second method classifies the ECG by pati...
详细信息
Heart monitoring improves life ***(ECGs or EKGs)detect heart *** learning algorithms can create a few ECG diagnosis processing *** first method uses raw ECG and time-series *** second method classifies the ECG by patient *** third technique translates ECG impulses into Q waves,R waves and S waves(QRS)features using richer *** ECG signals vary naturally between humans and activities,we will combine the three feature selection methods to improve classification accuracy and *** using all three approaches have not been examined till *** researchers found that Machine Learning(ML)techniques can improve ECG *** study will compare popular machine learning techniques to evaluate ECG *** algorithms—Support Vector Machine(SVM),Decision Tree,Naive Bayes,and Neural Network—compare categorization *** plus prior knowledge has the highest accuracy(99%)of the four ML *** characteristics failed to identify signals without chaos *** 99.8%classification accuracy,the Decision Tree technique outperformed all previous experiments.
This work presents an accelerator that performs blind deblurring based on the dark channel prior. The alternating minimization algorithm is leveraged for latent image and blur kernel estimation. A 2-D Laplace equation...
详细信息
Instance co-segmentation aims to segment the co-occurrent instances among two *** task heavily relies on instance-related cues provided by co-peaks,which are generally estimated by exhaustively exploiting all paired c...
详细信息
Instance co-segmentation aims to segment the co-occurrent instances among two *** task heavily relies on instance-related cues provided by co-peaks,which are generally estimated by exhaustively exploiting all paired candidates in point-to-point ***,such patterns could yield a high number of false-positive co-peaks,resulting in over-segmentation whenever there are mutual *** tackle with this issue,this paper proposes an instance co-segmentation method via tensor-based salient co-peak search(TSCPS-ICS).The proposed method explores high-order correlations via triple-to-triple matching among feature maps to find reliable co-peaks with the help of co-saliency *** proposed method is shown to capture more accurate intra-peaks and inter-peaks among feature maps,reducing the false-positive rate of co-peak *** having accurate co-peaks,one can efficiently infer responses of the targeted *** on four benchmark datasets validate the superior performance of the proposed method.
As big data,Artificial Intelligence,and Vehicle-to-Everything(V2X)communication have advanced,Intelligent Transportation Systems(ITS)are being developed to enable efficient and safe transportation *** Toll Collection(...
详细信息
As big data,Artificial Intelligence,and Vehicle-to-Everything(V2X)communication have advanced,Intelligent Transportation Systems(ITS)are being developed to enable efficient and safe transportation *** Toll Collection(ETC),which is one of the services included in ITS systems,is an automated system that allows vehicles to pass through toll plazas without stopping for manual *** ETC system is widely deployed on highways due to its contribution to stabilizing the overall traffic system *** ensure secure and efficient toll payments,designing a distributed model for sharing toll payment information among untrusted toll service providers is ***,the current ETC system operates under a centralized ***,both toll service providers and toll plazas know the toll usage history of *** raises concerns about revealing the entire driving routes and patterns of *** address these issues,blockchain technology,suitable for secure data management and data sharing in distributed systems,is being applied to the ETC *** enables efficient and transparent management of ETC ***,the public nature of blockchain poses a challenge where users’usage records are exposed to all *** tackle this,we propose a blockchain-based toll ticket model named AnonymousTollPass that considers the privacy of *** proposed model utilizes traceable ring signatures to provide unlinkability between tickets used by a vehicle and prevent the identity of the vehicle using the ticket from being identified among the ring members for the ***,malicious vehicles’identities can be traced when they attempt to reuse *** conducting simulations,we show the effectiveness of the proposed model and demonstrate that gas fees required for executing the proposed smart contracts are only 10%(when the ring size is 50)of the fees required in previous studies.
The development of the Internet of Things(IoT)technology is leading to a new era of smart applications such as smart transportation,buildings,and smart ***,these applications act as the building blocks of IoT-enabled ...
详细信息
The development of the Internet of Things(IoT)technology is leading to a new era of smart applications such as smart transportation,buildings,and smart ***,these applications act as the building blocks of IoT-enabled smart *** high volume and high velocity of data generated by various smart city applications are sent to flexible and efficient cloud computing resources for ***,there is a high computation latency due to the presence of a remote cloud *** computing,which brings the computation close to the data source is introduced to overcome this *** an IoT-enabled smart city environment,one of the main concerns is to consume the least amount of energy while executing tasks that satisfy the delay *** efficient resource allocation at the edge is helpful to address this *** this paper,an energy and delay minimization problem in a smart city environment is formulated as a bi-objective edge resource allocation ***,we presented a three-layer network architecture for IoT-enabled smart ***,we designed a learning automata-based edge resource allocation approach considering the three-layer network architecture to solve the said bi-objective minimization *** Automata(LA)is a reinforcement-based adaptive decision-maker that helps to find the best task and edge resource *** extensive set of simulations is performed to demonstrate the applicability and effectiveness of the LA-based approach in the IoT-enabled smart city environment.
暂无评论