This paper explores the impact of source data compression on the performance of task execution at the receiver side of a communication system, and investigates the interference and impact of channel environment variat...
详细信息
Perceptual image hashing is a significant and time-effective method for recognizing images within extensive databases, focusing on achieving two key objectives: robustness and discrimination. The right balance between...
详细信息
Coronavirus belongs to the family of Coronaviridae. It is responsible for COVID-19 communicable disease, which has affected 213 countries and territories worldwide. Researchers in computational fields have been active...
详细信息
Human pose estimation is a critical research area in the field of computer vision,playing a significant role in applications such as human-computer interaction,behavior analysis,and action *** this paper,we propose a ...
详细信息
Human pose estimation is a critical research area in the field of computer vision,playing a significant role in applications such as human-computer interaction,behavior analysis,and action *** this paper,we propose a U-shaped keypoint detection network(DAUNet)based on an improved ResNet subsampling structure and spatial grouping *** network addresses key challenges in traditional methods,such as information loss,large network redundancy,and insufficient sensitivity to low-resolution *** is composed of three main ***,we introduce an improved BottleNeck block that employs partial convolution and strip pooling to reduce computational load and mitigate feature ***,after upsampling,the network eliminates redundant features,improving the overall ***,a lightweight spatial grouping attention mechanism is applied to enhance low-resolution semantic features within the feature map,allowing for better restoration of the original image size and higher *** results demonstrate that DAUNet achieves superior accuracy compared to most existing keypoint detection models,with a mean PCKh@0.5 score of 91.6%on the MPII dataset and an AP of 76.1%on the COCO ***,real-world experiments further validate the robustness and generalizability of DAUNet for detecting human bodies in unknown environments,highlighting its potential for broader applications.
Periodic patternmining has become a popular research subject in recent years;this approach involves the discoveryof frequently recurring patterns in a transaction sequence. However, previous algorithms for periodic pa...
详细信息
Periodic patternmining has become a popular research subject in recent years;this approach involves the discoveryof frequently recurring patterns in a transaction sequence. However, previous algorithms for periodic patternmining have ignored the utility (profit, value) of patterns. Additionally, these algorithms only identify periodicpatterns in a single sequence. However, identifying patterns of high utility that are common to a set of sequencesis more valuable. In several fields, identifying high-utility periodic frequent patterns in multiple sequences isimportant. In this study, an efficient algorithm called MHUPFPS was proposed to identify such patterns. To addressexisting problems, three new measures are defined: the utility, high support, and high-utility period sequenceratios. Further, a new upper bound, upSeqRa, and two new pruning properties were proposed. MHUPFPS usesa newly defined HUPFPS-list structure to significantly accelerate the reduction of the search space and improvethe overall performance of the algorithm. Furthermore, the proposed algorithmis evaluated using several *** experimental results indicate that the algorithm is accurate and effective in filtering several non-high-utilityperiodic frequent patterns.
Due to the security and scalability features of hybrid cloud architecture,it can bettermeet the diverse requirements of users for cloud *** a reasonable resource allocation solution is the key to adequately utilize th...
详细信息
Due to the security and scalability features of hybrid cloud architecture,it can bettermeet the diverse requirements of users for cloud *** a reasonable resource allocation solution is the key to adequately utilize the hybrid ***,most previous studies have not comprehensively optimized the performance of hybrid cloud task scheduling,even ignoring the conflicts between its security privacy features and other *** on the above problems,a many-objective hybrid cloud task scheduling optimization model(HCTSO)is constructed combining risk rate,resource utilization,total cost,and task completion ***,an opposition-based learning knee point-driven many-objective evolutionary algorithm(OBL-KnEA)is proposed to improve the performance of model *** algorithm uses opposition-based learning to generate initial populations for faster ***,a perturbation-based multipoint crossover operator and a dynamic range mutation operator are designed to extend the search *** comparing the experiments with other excellent algorithms on HCTSO,OBL-KnEA achieves excellent results in terms of evaluation metrics,initial populations,and model optimization effects.
Animal emotion detection, including elephant emotions, is highly possible, but what the traditional emotion detection approaches highlight is their blatant ignorance of adopting edge-enabled intelligence and serverles...
详细信息
Long-term care refers to any support, both medical and non-medical, provided to the elderly with a chronic illness or disability due to physical or mental conditions. Since the cost of long-term care insurance is not ...
详细信息
The sharing of encrypted data in cloud computing is an essential functionality with countless applications in our everyday life. However, the issue of how to securely, efficiently and flexibly share encrypted data in ...
详细信息
In high-risk industrial environments like nuclear power plants, precise defect identification and localization are essential for maintaining production stability and safety. However, the complexity of such a harsh env...
详细信息
In high-risk industrial environments like nuclear power plants, precise defect identification and localization are essential for maintaining production stability and safety. However, the complexity of such a harsh environment leads to significant variations in the shape and size of the defects. To address this challenge, we propose the multivariate time series segmentation network(MSSN), which adopts a multiscale convolutional network with multi-stage and depth-separable convolutions for efficient feature extraction through variable-length templates. To tackle the classification difficulty caused by structural signal variance, MSSN employs logarithmic normalization to adjust instance distributions. Furthermore, it integrates classification with smoothing loss functions to accurately identify defect segments amid similar structural and defect signal subsequences. Our algorithm evaluated on both the Mackey-Glass dataset and industrial dataset achieves over 95% localization and demonstrates the capture capability on the synthetic dataset. In a nuclear plant's heat transfer tube dataset, it captures 90% of defect instances with75% middle localization F1 score.
暂无评论