In the era of 6G, cellular networks will no longer be locked into a small set of equipment manufacturers;instead, cellular networks will be disaggregated and support open interfaces. Thus, there is an inherent need fo...
详细信息
Nowadays in the medicalfield,imaging techniques such as Optical Coherence Tomography(OCT)are mainly used to identify retinal *** this paper,the Central Serous Chorio Retinopathy(CSCR)image is analyzed for various stag...
详细信息
Nowadays in the medicalfield,imaging techniques such as Optical Coherence Tomography(OCT)are mainly used to identify retinal *** this paper,the Central Serous Chorio Retinopathy(CSCR)image is analyzed for various stages and then compares the difference between CSCR before as well as after treatment using different application *** approach,which was focused on image quality,improves medical image *** enhancement algorithm was implemented to improve the OCT image contrast and denoise purpose called Boosted Anisotropic Diffusion with an Unsharp Masking Filter(BADWUMF).The classifier used here is tofigure out whether the OCT image is a CSCR case or not.150 images are checked for this research work(75 abnormal from Optical Coherence Tomography Image Retinal Database,in-house clinical database,and 75 normal images).This article explicitly decides that the approaches suggested aid the ophthalmologist with the precise retinal analysis and hence the risk factors to be *** total precision is 90 percent obtained from the Two Class Support Vector Machine(TCSVM)classifier and 93.3 percent is obtained from Shallow Neural Network with the Powell-Beale(SNNWPB)classifier using the MATLAB 2019a program.
Efficient navigation of emergency response vehicles (ERVs) through urban congestion is crucial to life-saving efforts, yet traditional traffic systems often slow down their swift passage. In this work, we introduce Dy...
详细信息
As a pivotal enabler of intelligent transportation system(ITS), Internet of vehicles(Io V) has aroused extensive attention from academia and industry. The exponential growth of computation-intensive, latency-sensitive...
详细信息
As a pivotal enabler of intelligent transportation system(ITS), Internet of vehicles(Io V) has aroused extensive attention from academia and industry. The exponential growth of computation-intensive, latency-sensitive,and privacy-aware vehicular applications in Io V result in the transformation from cloud computing to edge computing,which enables tasks to be offloaded to edge nodes(ENs) closer to vehicles for efficient execution. In ITS environment,however, due to dynamic and stochastic computation offloading requests, it is challenging to efficiently orchestrate offloading decisions for application requirements. How to accomplish complex computation offloading of vehicles while ensuring data privacy remains challenging. In this paper, we propose an intelligent computation offloading with privacy protection scheme, named COPP. In particular, an Advanced Encryption Standard-based encryption method is utilized to implement privacy protection. Furthermore, an online offloading scheme is proposed to find optimal offloading policies. Finally, experimental results demonstrate that COPP significantly outperforms benchmark schemes in the performance of both delay and energy consumption.
Nowadays,the personalized recommendation has become a research hotspot for addressing information *** this,generating effective recommendations from sparse data remains a ***,auxiliary information has been widely used...
详细信息
Nowadays,the personalized recommendation has become a research hotspot for addressing information *** this,generating effective recommendations from sparse data remains a ***,auxiliary information has been widely used to address data sparsity,but most models using auxiliary information are linear and have limited *** to the advantages of feature extraction and no-label requirements,autoencoder-based methods have become quite ***,most existing autoencoder-based methods discard the reconstruction of auxiliary information,which poses huge challenges for better representation learning and model *** address these problems,we propose Serial-Autoencoder for Personalized Recommendation(SAPR),which aims to reduce the loss of critical information and enhance the learning of feature ***,we first combine the original rating matrix and item attribute features and feed them into the first autoencoder for generating a higher-level representation of the ***,we use a second autoencoder to enhance the reconstruction of the data representation of the prediciton rating *** output rating information is used for recommendation *** experiments on the MovieTweetings and MovieLens datasets have verified the effectiveness of SAPR compared to state-of-the-art models.
In recent years, underwater robots have been an essential focus of marine science and technology applications. Whether it is the application of military tasks or general civil affairs, underwater robots have played a ...
详细信息
The hardware and software of a computer are controlled by its operating system (OS), which performs essential tasks such as input and output processing, file and memory management, and the management of peripheral dev...
详细信息
Bat Algorithm (BA) is a nature-inspired metaheuristic search algorithm designed to efficiently explore complex problem spaces and find near-optimal solutions. The algorithm is inspired by the echolocation behavior of ...
详细信息
Owing to massive technological developments in Internet of Things(IoT)and cloud environment,cloud computing(CC)offers a highly flexible heterogeneous resource pool over the network,and clients could exploit various re...
详细信息
Owing to massive technological developments in Internet of Things(IoT)and cloud environment,cloud computing(CC)offers a highly flexible heterogeneous resource pool over the network,and clients could exploit various resources on *** IoT-enabled models are restricted to resources and require crisp response,minimum latency,and maximum bandwidth,which are outside the *** was handled as a resource-rich solution to aforementioned *** high delay reduces the performance of the IoT enabled cloud platform,efficient utilization of task scheduling(TS)reduces the energy usage of the cloud infrastructure and increases the income of service provider via minimizing processing time of user ***,this article concentration on the design of an oppositional red fox optimization based task scheduling scheme(ORFOTSS)for IoT enabled cloud *** presented ORFO-TSS model resolves the problem of allocating resources from the IoT based cloud *** achieves the makespan by performing optimum TS procedures with various aspects of incoming *** designing of ORFO-TSS method includes the idea of oppositional based learning(OBL)as to traditional RFO approach in enhancing their efficiency.A wide-ranging experimental analysis was applied on the CloudSim *** experimental outcome highlighted the efficacy of the ORFO-TSS technique over existing approaches.
Automatically detecting and locating remote occlusion small objects from the images of complex traffic environments is a valuable and challenging *** the boundary box location is not sufficiently accurate and it is di...
详细信息
Automatically detecting and locating remote occlusion small objects from the images of complex traffic environments is a valuable and challenging *** the boundary box location is not sufficiently accurate and it is difficult to distinguish overlapping and occluded objects,the authors propose a network model with a second-order term attention mechanism and occlusion ***,the backbone network is built on *** a method is designed for the feature extraction network based on an item-wise attention mechanism,which uses the filtered weighted feature vector to replace the original residual fusion and adds a second-order term to reduce the information loss in the process of fusion and accelerate the convergence of the ***,an objected occlusion regression loss function is studied to reduce the problems of missed detections caused by dense *** experimental results demonstrate that the authors’method achieved state-of-the-art performance without reducing the detection *** mAP@.5 of the method is 85.8%on the Foggy_cityscapes dataset and the mAP@.5 of the method is 97.8%on the KITTI dataset.
暂无评论