One of themost prominent research areas in informationtechnology is the Internet of Things (IoT) as its applications are widely used, such as structural monitoring, health care management systems, agriculture and bat...
详细信息
One of themost prominent research areas in informationtechnology is the Internet of Things (IoT) as its applications are widely used, such as structural monitoring, health care management systems, agriculture and battlefield management, and so on. Due to its self-organizing network and simple installation of the network, the researchers have been attracted to pursue research in the various fields of IoTs. However, a huge amount of work has been addressed on various problems confronted by IoT. The nodes densely deploy over critical environments and those are operated on tiny batteries. Moreover, the replacement of dead batteries in the nodes is almost impractical. Therefore, the problem of energy preservation and maximization of IoT networks has become the most prominent research area. However, numerous state-of-The-Art algorithms have addressed this issue. Thus, it has become necessary to gather the information and send it to the base station in an optimized method to maximize the network. Therefore, in this article, we propose a novel quantum-informed ant colony optimization (ACO) routing algorithm with the efficient encoding scheme of cluster head selection and derivation of information heuristic factors. The algorithm has been tested by simulation for various network scenarios. The simulation results of the proposed algorithm show its efficacy over a few existing evolutionary algorithms using various performance metrics, such as residual energy of the network, network lifetime, and the number of live IoT nodes. Impact Statement-Toward IoT-based applications, here we presented the Quantum-inspired ACO clustering algorithm for network lifetime. IoT nodes in the clustering phase choose theirCH through the distance between cluster member IoT nodes and the residual energy. Thus, CH selection reduces the energy consumption of member IoT nodes. Therefore, our significant contributions are summarized as follows. i. Developing Quantum-informed ACO clustered routing algor
Sentiment analysis can be used to identify if a text’s sentiment is neutral, positive, or negative. One type of natural language processing is sentiment analysis. An interdisciplinary field encompassing linguistics, ...
详细信息
Interpretable visual recognition is essential for decision-making in high-stakes situations. Recent advancements have automated the construction of interpretable models by leveraging Visual Language Models (VLMs) and ...
详细信息
This systematic literature review delves into the dynamic realm of graphical passwords, focusing on the myriad security attacks they face and the diverse countermeasures devised to mitigate these threats. The core obj...
详细信息
Preservation of the crops depends on early and accurate detection of pests on crops as they cause several diseases decreasing crop production and quality. Several deep-learning techniques have been applied to overcome...
详细信息
Preservation of the crops depends on early and accurate detection of pests on crops as they cause several diseases decreasing crop production and quality. Several deep-learning techniques have been applied to overcome the issue of pest detection on crops. We have developed the YOLOCSP-PEST model for Pest localization and classification. With the Cross Stage Partial Network (CSPNET) backbone, the proposed model is a modified version of You Only Look Once Version 7 (YOLOv7) that is intended primarily for pest localization and classification. Our proposed model gives exceptionally good results under conditions that are very challenging for any other comparable models especially conditions where we have issues with the luminance and the orientation of the images. It helps farmers working out on their crops in distant areas to determine any infestation quickly and accurately on their crops which helps in the quality and quantity of the production yield. The model has been trained and tested on 2 datasets namely the IP102 data set and a local crop data set on both of which it has shown exceptional results. It gave us a mean average precision (mAP) of 88.40% along with a precision of 85.55% and a recall of 84.25% on the IP102 dataset meanwhile giving a mAP of 97.18% on the local data set along with a recall of 94.88% and a precision of 97.50%. These findings demonstrate that the proposed model is very effective in detecting real-life scenarios and can help in the production of crops improving the yield quality and quantity at the same time.
The challenge of bankruptcy prediction, critical for averting financial sector losses, is amplified by the prevalence of imbalanced datasets, which often skew prediction models. Addressing this, our study introduces t...
详细信息
Web Navigation Prediction (WNP) has been popularly used for finding future probable web pages. Obtaining relevant information from a large web is challenging, as its size is growing with every second. Web data may con...
详细信息
Facial expression recognition is a challenging task when neural network is applied to pattern recognition. Most of the current recognition research is based on single source facial data, which generally has the disadv...
详细信息
Efficient botnet detection is of great security importance and has been the focus of researchers in recent years. Botnet detection is also a difficult task due to the difficulty in distinguishing it from normal traffi...
详细信息
Nowadays, social media applications and websites have become a crucial part of people’s lives;for sharing their moments, contacting their families and friends, or even for their jobs. However, the fact that these val...
详细信息
暂无评论