咨询与建议

限定检索结果

文献类型

  • 9,285 篇 会议
  • 8,298 篇 期刊文献
  • 103 册 图书

馆藏范围

  • 17,686 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 10,940 篇 工学
    • 8,265 篇 计算机科学与技术...
    • 6,860 篇 软件工程
    • 2,669 篇 信息与通信工程
    • 1,801 篇 生物工程
    • 1,532 篇 控制科学与工程
    • 1,301 篇 电气工程
    • 1,194 篇 生物医学工程(可授...
    • 1,016 篇 光学工程
    • 905 篇 电子科学与技术(可...
    • 591 篇 机械工程
    • 538 篇 化学工程与技术
    • 454 篇 网络空间安全
    • 441 篇 交通运输工程
    • 437 篇 动力工程及工程热...
    • 414 篇 仪器科学与技术
    • 414 篇 安全科学与工程
  • 6,512 篇 理学
    • 3,264 篇 数学
    • 2,049 篇 生物学
    • 1,737 篇 物理学
    • 1,251 篇 统计学(可授理学、...
    • 669 篇 化学
    • 593 篇 系统科学
  • 3,140 篇 管理学
    • 1,781 篇 管理科学与工程(可...
    • 1,492 篇 图书情报与档案管...
    • 901 篇 工商管理
  • 1,147 篇 医学
    • 956 篇 临床医学
    • 862 篇 基础医学(可授医学...
    • 518 篇 药学(可授医学、理...
    • 489 篇 公共卫生与预防医...
  • 563 篇 法学
    • 483 篇 社会学
  • 339 篇 经济学
  • 275 篇 农学
  • 171 篇 教育学
  • 60 篇 文学
  • 32 篇 军事学
  • 23 篇 艺术学
  • 2 篇 哲学
  • 2 篇 历史学

主题

  • 683 篇 deep learning
  • 612 篇 accuracy
  • 440 篇 feature extracti...
  • 437 篇 machine learning
  • 398 篇 computational mo...
  • 390 篇 training
  • 325 篇 predictive model...
  • 323 篇 real-time system...
  • 294 篇 semantics
  • 262 篇 internet of thin...
  • 244 篇 optimization
  • 226 篇 support vector m...
  • 224 篇 convolutional ne...
  • 200 篇 reinforcement le...
  • 193 篇 neural networks
  • 187 篇 data mining
  • 185 篇 data models
  • 162 篇 image segmentati...
  • 147 篇 reliability
  • 143 篇 artificial intel...

机构

  • 426 篇 department of ph...
  • 397 篇 iccub universita...
  • 372 篇 horia hulubei na...
  • 363 篇 h.h. wills physi...
  • 308 篇 university of ch...
  • 293 篇 nikhef national ...
  • 291 篇 van swinderen in...
  • 290 篇 imperial college...
  • 289 篇 school of physic...
  • 289 篇 center for high ...
  • 285 篇 department of ph...
  • 285 篇 physik-institut ...
  • 285 篇 oliver lodge lab...
  • 285 篇 physikalisches i...
  • 283 篇 cavendish labora...
  • 283 篇 stfc rutherford ...
  • 283 篇 school of physic...
  • 283 篇 school of physic...
  • 282 篇 institute of par...
  • 279 篇 departamento de ...

作者

  • 250 篇 barter w.
  • 241 篇 beiter a.
  • 235 篇 bellee v.
  • 222 篇 casse g.
  • 214 篇 bowcock t.j.v.
  • 214 篇 blake t.
  • 204 篇 brundu d.
  • 200 篇 borsato m.
  • 198 篇 betancourt c.
  • 165 篇 bediaga i.
  • 158 篇 niyato dusit
  • 157 篇 baker s.
  • 150 篇 amato s.
  • 147 篇 baryshnikov f.
  • 146 篇 boettcher t.
  • 144 篇 albrecht j.
  • 143 篇 a. jawahery
  • 143 篇 m. gandelman
  • 143 篇 t. gershon
  • 143 篇 r. mountain

语言

  • 15,616 篇 英文
  • 1,973 篇 其他
  • 122 篇 中文
  • 4 篇 德文
  • 4 篇 法文
  • 2 篇 斯洛文尼亚文
  • 2 篇 土耳其文
  • 1 篇 朝鲜文
  • 1 篇 俄文
检索条件"机构=Computer Science and Engineering with Data Science"
17686 条 记 录,以下是4581-4590 订阅
排序:
APSeg: Auto-Prompt Network for Cross-Domain Few-Shot Semantic Segmentation
arXiv
收藏 引用
arXiv 2024年
作者: He, Weizhao Zhang, Yang Zhuo, Wei Shen, Linlin Yang, Jiaqi Deng, Songhe Sun, Liang Computer Vision Institute School of Computer Science & Software Engineering Shenzhen University China Shenzhen Institute of Artificial Intelligence and Robotics for Society China National Engineering Laboratory for Big Data System Computing Technology Shenzhen University China School of Computer Science University of Nottingham China
Few-shot semantic segmentation (FSS) endeavors to segment unseen classes with only a few labeled samples. Current FSS methods are commonly built on the assumption that their training and application scenarios share si... 详细信息
来源: 评论
Machine learning strategies for small sample size in materials science
收藏 引用
science China Materials 2025年 第2期68卷 387-405页
作者: Qiuling Tao JinXin Yu Xiangyu Mu Xue Jia Rongpei Shi Zhifu Yao Cuiping Wang Haijun Zhang Xingjun Liu School of Materials Science and Engineering and Institute of Materials Genome&Big DataHarbin Institute of TechnologyShenzhenShenzhen 518055China School of Computer Science&Technology Harbin Institute of TechnologyShenzhenShenzhen 518055China Advanced Institute for Materials Research(WPI-AIMR) Tohoku UniversitySendai 980-8577Japan Department of Materials Science and Engineering College of MaterialsXiamen UniversityXiamen 361005China State Key Laboratory of Advanced Welding and Joining Harbin Institute of TechnologyShenzhenShenzhen 518055China
Machine learning (ML) has been widely used todesign and develop new materials owing to its low computational cost and powerful predictive capabilities. In recentyears, the shortcomings of ML in materials science have ... 详细信息
来源: 评论
Deploying DAPHNE Computational Intelligence on EuroHPC Vega for Benchmarking Randomised Optimisation Algorithms
Deploying DAPHNE Computational Intelligence on EuroHPC Vega ...
收藏 引用
International Conference on Broadband Communications for Next Generation Networks and Multimedia Applications (CoBCom)
作者: Aleš Zamuda Mark Dokter Faculty of Electrical Engineering and Computer Science University of Maribor Maribor Slovenia KNOW-CENTER GmbH Research Center for Data-Driven Business & Big Data Analytics Graz Austria
This paper presents a deployment of DAPHNE (Integrated data Analysis Pipelines for Large-Scale data Management, HPC and Machine Learning) for Computational Intelligence (CI). As CI progresses, e.g. through effort in h... 详细信息
来源: 评论
Bilateral Network with Residual U-blocks and Dual-Guided Attention for Real-time Semantic Segmentation
Bilateral Network with Residual U-blocks and Dual-Guided Att...
收藏 引用
Chinese Automation Congress (CAC)
作者: Liang Liao Liang Wan Mingsheng Liu Shusheng Li State Key Laboratory of Public Big Data College of Computer Science and Technology Guizhou University Guiyang China School Of Computer Science And Engineering Northeastern Univiversity Shenyang China
When some application scenarios need to use semantic segmentation technology, like automatic driving, the primary concern comes to real-time performance rather than extremely high segmentation accuracy. To achieve a g...
来源: 评论
Rockburst prediction using artificial intelligence techniques:A review
Rock Mechanics Bulletin
收藏 引用
Rock Mechanics Bulletin 2024年 第3期3卷 1-13页
作者: Yu Zhang Kongyi Fang Manchao He Dongqiao Liu Junchao Wang Zhengjia Guo School of Electrical and Information Engineering Beijing University of Civil Engineering and ArchitectureBeijing100044China Beijing Key Laboratory of Intelligent Processing for Building Big Data Beijing University of Civil Engineering and ArchitectureBeijing100044China State Key Laboratory for Geomechanics and Deep Underground Engineering China University of Mining and TechnologyBeijing100083China Thomas Lord Department of Computer Science University of Southern CaliforniaLos Angeles90007CAUSA
Rockburst is a phenomenon where sudden,catastrophic failure of the rock mass occurs in underground deep regions or areas with high tectonic stress during the excavation *** disasters endanger the safety of people'... 详细信息
来源: 评论
Localization of Image Splicing Under Segment Anything Model With Integrated Compression and Edge Artifacts
Localization of Image Splicing Under Segment Anything Model ...
收藏 引用
IEEE International Conference on Image Processing
作者: Ruhao Zhao Xian Zhong Liang Liao Wenxuan Liu Wenxin Huang Zheng Wang School of Computer Science and Artificial Intelligence Hubei Key Laboratory of Transportation Internet of Things Wuhan University of Technology School of Electrical and Electronic Engineering Rapid-Rich Object Search Lab Nanyang Technological University College of Computing and Data Science Nanyang Technological University School of Computer Science and Information Engineering Hubei University School of Computer Science National Engineering Research Center for Multimedia Software Wuhan University
The localization of image splicing involves identifying pixels in an image that have been spliced from other images, necessitating the discernment of splicing features. Despite significant advancements driven by the r... 详细信息
来源: 评论
LineConGraphs: Line Conversation Graphs for Effective Emotion Recognition using Graph Neural Networks
收藏 引用
IEEE Transactions on Affective Computing 2025年
作者: Krishnan, Gokul S. Padi, Sarala Greenberg, Craig S. Ravindran, Balaraman Manocha, Dinesh Sriram, Ram D. IIT Madras Centre for Responsible AI Wadhwani School of Data Science and AI Chennai India National Institute of Standards and Technology GaithersburgMD United States University of Maryland Computer Science and Engineering College ParkMD United States
Emotion Recognition in Conversations (ERC) is an important aspect of affective computing with practical applications in healthcare, education, chatbots, and social media platforms. Previous approaches to ERC analysis ... 详细信息
来源: 评论
Hybrid Model for Lung Cancer Prognosis: Integrating SVM and 3D CNN on Nodule data
Hybrid Model for Lung Cancer Prognosis: Integrating SVM and ...
收藏 引用
Emerging Research in Computational science (ICERCS), International Conference on
作者: Carmel Mary Belinda M J Kannan E Alex David S Sriram Kannan Ravi Kumar S. Anstey Vathani Department of Computer Science and Engineering Saveetha School of Engineering Saveetha Institute of Medical and Technical Sciences Chennai India Department of Computer Science and Engineering Vel Tech Rangarajan Dr. Sagunthala R&D Institute of Science and Technology Chennai India Data Engineering Fidelity Investments Chennai India Department of Civil Engineering Vel Tech Rangarajan Dr Sagunthala RD Institute of Science and Technology
In this research, a huge dataset of lung cancer images is processed using advanced image processing techniques gathered from different medical establishments. Images will be edited and color profiles retouched from or... 详细信息
来源: 评论
AMRDB: Design of an automatic analytical model for density-based clustering using augmented rule mining
AMRDB: Design of an automatic analytical model for density-b...
收藏 引用
International Conference on Computing and Networking Technology (ICCNT)
作者: Jayshri Harde Swapnili Karmore Computer Science and Engineering G H Raisoni University Saikheda Sausar India Data Science Department G H Raisoni Institute of Engineering and Technology Nagpur India
Density based clustering (DBC) is an unsupervised learning method which is capable of identifying distinct groups of information. It works on the principle of instance-based variance maximization between distinct grou...
来源: 评论
Snapshot boosting: a fast ensemble framework for deep neural networks
收藏 引用
science China(Information sciences) 2020年 第1期63卷 77-88页
作者: Wentao ZHANG Jiawei JIANG Yingxia SHAO Bin CUI Center for Data Science Peking University National Engineering Laboratory for Big Data Analysis and Applications Department of Computer Science Beijing Key Lab of Intelligent Telecommunications Software and Multimedia School of Computer ScienceBeijing University of Posts and Telecommunications Key Lab of High Confidence Software Technologies Department of Computer SciencePeking University
Boosting has been proven to be effective in improving the generalization of machine learning models in many fields. It is capable of getting high-diversity base learners and getting an accurate ensemble model by combi... 详细信息
来源: 评论