咨询与建议

限定检索结果

文献类型

  • 193 篇 期刊文献
  • 134 篇 会议

馆藏范围

  • 327 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 182 篇 工学
    • 96 篇 计算机科学与技术...
    • 74 篇 软件工程
    • 30 篇 电气工程
    • 29 篇 信息与通信工程
    • 26 篇 控制科学与工程
    • 25 篇 电子科学与技术(可...
    • 24 篇 材料科学与工程(可...
    • 24 篇 生物医学工程(可授...
    • 24 篇 生物工程
    • 16 篇 光学工程
    • 15 篇 化学工程与技术
    • 9 篇 机械工程
    • 8 篇 仪器科学与技术
  • 143 篇 理学
    • 68 篇 物理学
    • 43 篇 生物学
    • 30 篇 数学
    • 24 篇 化学
    • 13 篇 统计学(可授理学、...
    • 7 篇 天文学
  • 64 篇 管理学
    • 36 篇 管理科学与工程(可...
    • 25 篇 工商管理
    • 23 篇 图书情报与档案管...
    • 10 篇 公共管理
  • 49 篇 医学
    • 33 篇 临床医学
    • 30 篇 基础医学(可授医学...
    • 20 篇 公共卫生与预防医...
    • 12 篇 药学(可授医学、理...
  • 19 篇 法学
    • 18 篇 社会学
  • 13 篇 农学
    • 8 篇 作物学
  • 7 篇 经济学
  • 7 篇 教育学
    • 7 篇 教育学
  • 3 篇 文学

主题

  • 8 篇 deep learning
  • 8 篇 machine learning
  • 6 篇 convolutional ne...
  • 5 篇 internet of thin...
  • 5 篇 computational mo...
  • 5 篇 feature extracti...
  • 5 篇 data models
  • 4 篇 intrusion detect...
  • 4 篇 generative adver...
  • 4 篇 neural networks
  • 4 篇 social networkin...
  • 4 篇 students
  • 4 篇 sentiment analys...
  • 4 篇 accuracy
  • 4 篇 technological in...
  • 3 篇 wireless communi...
  • 3 篇 medical services
  • 3 篇 vectors
  • 3 篇 data mining
  • 3 篇 market research

机构

  • 8 篇 computer science...
  • 7 篇 health managemen...
  • 7 篇 master program o...
  • 7 篇 entrepreneurship...
  • 7 篇 singapore eye re...
  • 7 篇 department of co...
  • 6 篇 royal stoke univ...
  • 6 篇 department of co...
  • 6 篇 research center ...
  • 5 篇 leeds institute ...
  • 5 篇 department of ph...
  • 5 篇 center for psych...
  • 5 篇 department of in...
  • 5 篇 institute for pa...
  • 5 篇 department of co...
  • 5 篇 department of st...
  • 5 篇 university of pi...
  • 5 篇 arnie charbonnea...
  • 5 篇 university centr...
  • 5 篇 ilsbio llc bioba...

作者

  • 9 篇 puput dani prase...
  • 8 篇 tsao yu
  • 8 篇 fairuz iqbal mau...
  • 8 篇 tsai chia-wei
  • 8 篇 yang chun-wei
  • 7 篇 chien ting-ying
  • 7 篇 maulana fairuz i...
  • 7 篇 chiribella giuli...
  • 7 篇 lin jason
  • 7 篇 hiroshi hashimot...
  • 7 篇 li yiming
  • 7 篇 shahzad sahibzad...
  • 6 篇 lestari dian
  • 6 篇 adi puput dani p...
  • 6 篇 rob knight
  • 6 篇 hashmi ammarah
  • 6 篇 cooharojananone ...
  • 6 篇 supangkat suhono...
  • 6 篇 wang hsin-min
  • 5 篇 jaekwang kim

语言

  • 307 篇 英文
  • 16 篇 其他
  • 3 篇 中文
检索条件"机构=Computer Science and Innovation Program"
327 条 记 录,以下是161-170 订阅
排序:
Randomised controlled trials evaluating artificial intelligence in clinical practice: a scoping review
收藏 引用
The Lancet Digital Health 2024年 第5期6卷 e367-e373页
作者: Han, Ryan Acosta, Julián N Shakeri, Zahra Ioannidis, John P A Topol, Eric J Rajpurkar, Pranav Department of Biomedical Informatics Harvard Medical School BostonMA United States Department of Computer Science Stanford University StanfordCA United States University of California Los Angeles–Caltech Medical Scientist Training Program Los AngelesCA United States Department of Neurology Yale School of Medicine New HavenCT United States Rad AI San FranciscoCA United States Institute of Health Policy Management and Evaluation Dalla Lana School of Public Health University of Toronto TorontoON Canada Stanford Prevention Research Center Department of Medicine Stanford University StanfordCA United States Meta-Research Innovation Center at Stanford Stanford University StanfordCA United States Scripps Research Translational Institute Scripps Research La JollaCA United States
This scoping review of randomised controlled trials on artificial intelligence (AI) in clinical practice reveals an expanding interest in AI across clinical specialties and locations. The USA and China are leading in ... 详细信息
来源: 评论
Transfer learning approach to modeling multichannel gate-all-around nanosheet field-effect transistors under work function fluctuations
收藏 引用
Engineering Applications of Artificial Intelligence 2025年 148卷
作者: Dash, Sagarika Li, Yiming Parallel and Scientific Computing Laboratory National Yang-Ming Chiao Tung University 1001 Ta-Hsueh Rd. Hsinchu300093 Taiwan Electrical Engineering and Computer Science International Graduate Program National Yang-Ming Chiao Tung University 1001 Ta-Hsueh Rd. Hsinchu300093 Taiwan Institute of Communications Engineering National Yang-Ming Chiao Tung University 1001 Ta-Hsueh Rd. Hsinchu300093 Taiwan Institute of Biomedical Engineering National Yang-Ming Chiao Tung University 1001 Ta-Hsueh Rd. Hsinchu300093 Taiwan Institute of Pioneer Semiconductor Innovation National Yang-Ming Chiao Tung University 1001 Ta-Hsueh Rd. Hsinchu300093 Taiwan Institute of Artificial Intelligence Innovation National Yang-Ming Chiao Tung University 1001 Ta-Hsueh Rd. Hsinchu300093 Taiwan Department of Electronics and Electrical Engineering National Yang-Ming Chiao Tung University 1001 Ta-Hsueh Rd. Hsinchu300093 Taiwan Department of Microelectronics National Yang-Ming Chiao Tung University 1001 Ta-Hsueh Rd. Hsinchu300093 Taiwan
Deep learning (DL) has significantly advanced various industries, including semiconductors, by providing sophisticated methods for analyzing emerging device data. Transfer learning (TL), a prominent DL topology, lever... 详细信息
来源: 评论
An artificial intelligence method for vessel detection in images of cardiac catheterization
收藏 引用
Informatics in Medicine Unlocked 2023年 39卷
作者: Chien, Ting-Ying Ting, Hsien-Wei Li, Hao-Wei Chang, Hsiao-Huang Department of Computer Science and Engineering Yuan Ze University 320 Taoyuan City Taiwan Graduate Program in Biomedical Informatics Yuan Ze University 320 Taoyuan City Taiwan Innovation Center for Big Data and Digital Convergence Yuan Ze University 320 Taoyuan City Taiwan Department of Neurosurgery Taipei Hospital Ministry of Health and Welfare 242 New Taipei City Taiwan Division of Cardiovascular Surgery Department of Surgery Taipei Veterans General Hospital Taipei 11217 Taiwan Department of Surgery School of Medicine College of Medicine Taipei Medical University Taipei 11031 Taiwan
Coronary artery disease (CAD) is one of the top ten leading causes of death in countries worldwide. There are several methods used by physicians to diagnose CAD. One common method is the use of X-ray angiogram (XRA) i...
来源: 评论
Artificial intelligence for modelling infectious disease epidemics
收藏 引用
Nature 2025年 第8051期638卷 623-635页
作者: Kraemer, Moritz U. G. Tsui, Joseph L.-H. Chang, Serina Y. Lytras, Spyros Khurana, Mark P. Vanderslott, Samantha Bajaj, Sumali Scheidwasser, Neil Curran-Sebastian, Jacob Liam Semenova, Elizaveta Zhang, Mengyan Unwin, H. Juliette T. Watson, Oliver J. Mills, Cathal Dasgupta, Abhishek Ferretti, Luca Scarpino, Samuel V. Koua, Etien Morgan, Oliver Tegally, Houriiyah Paquet, Ulrich Moutsianas, Loukas Fraser, Christophe Ferguson, Neil M. Topol, Eric J. Duchêne, David A. Stadler, Tanja Kingori, Patricia Parker, Michael J. Dominici, Francesca Shadbolt, Nigel Suchard, Marc A. Ratmann, Oliver Flaxman, Seth Holmes, Edward C. Gomez-Rodriguez, Manuel Schölkopf, Bernhard Donnelly, Christl A. Pybus, Oliver G. Cauchemez, Simon Bhatt, Samir Pandemic Sciences Institute University of Oxford Oxford United Kingdom Department of Biology University of Oxford Oxford United Kingdom Department of Electrical Engineering and Computer Science University of California Berkeley Berkeley CA United States UCSF UC Berkeley Joint Program in Computational Precision Health Berkeley CA United States Division of Systems Virology Department of Microbiology and Immunology The Institute of Medical Science The University of Tokyo Tokyo Japan Section of Epidemiology Department of Public Health University of Copenhagen Copenhagen Denmark Oxford Vaccine Group University of Oxford and NIHR Oxford Biomedical Research Centre Oxford United Kingdom Department of Epidemiology and Biostatistics Imperial College London London United Kingdom Department of Computer Science University of Oxford Oxford United Kingdom School of Mathematics University of Bristol Bristol United Kingdom MRC Centre for Global Infectious Disease Analysis School of Public Health Imperial College London London United Kingdom Department of Statistics University of Oxford Oxford United Kingdom Doctoral Training Centre University of Oxford Oxford United Kingdom Institute for Experiential AI Northeastern University MA Boston Thailand Santa Fe Institute Santa Fe NM United States World Health Organization Regional Office for Africa Brazzaville Congo WHO Hub for Pandemic and Epidemic Intelligence Health Emergencies Programme World Health Organization Berlin Germany Centre for Epidemic Response and Innovation (CERI) School for Data Science and Computational Thinking Stellenbosch University Stellenbosch South Africa African Institute for Mathematical Sciences (AIMS) South Africa Muizenberg Cape Town South Africa Genomics England London United Kingdom Scripps Research La Jolla CA United States Department of Biosystems Science and Engineering ETH Zürich Basel Switzerland Swiss Institute of Bioinformatics Lausanne Switzerland The Ethox Centre Nuffield
Infectious disease threats to individual and public health are numerous, varied and frequently unexpected. Artificial intelligence (AI) and related technologies, which are already supporting human decision making in e...
来源: 评论
Molecular characterization of transesterification activity of novel lipase family I.1
收藏 引用
Bioscience Reports 2022年 第10期42卷 BSR20220654页
作者: Haryati, Titin Widhiastuty, Made Puspasari Warganegara, Fida Madayanti Akhmaloka, Akhmaloka Doctoral Program of Chemistry Faculty of Mathematics and Natural Science Institut Teknologi Bandung Jl. Ganesha 10 Jawa Barat Bandung 40132 Indonesia National Research and Innovation Agency Gedung B.J. Habibie Jalan M.H. Thamrin Nomor 8 Jakarta Pusat 10340 Indonesia Biochemistry Research Group Faculty of Mathematics and Natural Science Institut Teknologi Bandung Jl. Ganesha 10 Jawa Barat Bandung 40132 Indonesia Department of Chemistry Faculty of Science and Computer Universitas Pertamina Jl. Teuku Nyak Arief Jakarta Jakarta Selatan 12220 Indonesia
Lipase's thermostability and organic solvent tolerance are two crucial properties that enable it to function as a biocatalyst. The present study examined the characteristics of two recombinant thermostable lipases... 详细信息
来源: 评论
Large-Scale Distributed Multidisciplinary Design Optimization of the NASA Lift-Plus-Cruise Air Taxi Concept
Large-Scale Distributed Multidisciplinary Design Optimizatio...
收藏 引用
AIAA science and Technology Forum and Exposition, AIAA SciTech Forum 2025
作者: van Schie, Sebastiaan P. C. Ruh, Marius L. Fletcher, Andrew Warner, Michael Sperry, Mark Scotzniovsky, Luca Orndorff, Nicholas C. Xiang, Ru Yan, Jiayao Zhao, Han Krokowski, Joshua J. Chen, J.S. Sarojini, Darshan Gill, Hyunjune Lee, Seongkyu Tagg, Andrew Anderson, Ryan Green, Eric Joseph, Cibin Ning, Andrew Cheng, Zeyu Cao, Zhi Mi, Chunting Guibert, Alexandre T. R. Cronk, Ashley Kim, H. Alicia Meng, Y. Shirley Silva, Christopher Hwang, John T. University of California San Diego 9500 Gilman Dr La Jolla CA92093 United States Department of Mechanical and Aerospace Engineering University of California San Diego 9500 Gilman Dr La Jolla CA92093 United States Department of Structural Engineering University of California San Diego 9500 Gilman Dr La Jolla CA92093 United States Aerospace and Ocean Engineering Department Virginia Tech 1600 Innovation Dr BlacksburgVA24060 United States Department of Mechanical and Aerospace Engineering University of California Davis 1 Shields Avenue DavisCA95616 United States Mechanical Engineering Brigham Young University ProvoUT84602 United States Department of Electrical & Computer Engineering San Diego State University 5500 Campanile Dr San Diego92182 United States Structural Engineering Department University of California San Diego 9500 Gilman Dr La Jolla CA92093 United States Materials Science & Engineering Program University of California San Diego 9500 Gilman Dr La Jolla CA92093 United States Pritzker School of Molecular Engineering The University of Chicago ChicagoIL60607 United States NASA Ames Research Center Moffett FieldCA94035 United States
Large-scale gradient-based Multidisciplinary Design Optimization (MDO) can aid in the exploration of high-dimensional design spaces for novel air vehicle concepts, thereby leading to more efficient and economic design... 详细信息
来源: 评论
Ensuring unbiasedness: foundational insights into integrating GSTARIMA and DNN models for rainfall prediction
收藏 引用
Connection science 2025年 第1期37卷
作者: Devi Munandar Budi Nurani Ruchjana Atje Setiawan Abdullah Hilman Ferdinandus Pardede a Doctoral Program of Mathematics Faculty of Mathematics and Natural Sciences Universitas Padjadjaran Sumedang Indonesia b Department of Mathematics Faculty of Mathematics and Natural Sciences Universitas Padjadjaran Sumedang Indonesia c Department of Computer Science Faculty of Mathematics and Natural Sciences Universitas Padjadjaran Sumedang Indonesia d Research Center for Artificial Intelligence and Cybersecurity National Research and Innovation Agency (BRIN) Jakarta Pusat Indonesia
The GSTARIMA (Generalied Space–Time Autoregressive Integrated Moving Average) model is commonly used to analyse time series and spatial data with temporal and spatial dependencies. This paper focuses on estimating th... 详细信息
来源: 评论
Effect of Environment Temperature and Relative Humidity on Thermal Emissivity: Study Case of Mango Fruit
Effect of Environment Temperature and Relative Humidity on T...
收藏 引用
International Symposium on Intelligent Systems and Informatics (SISY)
作者: Panmanas Sirisomboon Jiraporn Sripinyowanich Jongyingcharoen Apiwat Junto Thitima Phanomsophon Cheewanun Dachoupakan Sirisomboon Panan Rerngsamran Dharma Raj Pokhrel Sneha Sharma Jetsada Posom Pimpen Pornchaloempong Anupun Terdwongwarakul Prabhas Chongstitvatana Department of Agricultural Engineering School of Engineering King Mongkut's Institute of Technology Ladkrabang Bangkok Thailand Department of Agricultural Engineering School of Engineering and Innovation Rajamangala University of Technology Tawan-Ok Chon Buri Thailand Office of Administrative Interdisciplinary Program on Agricultural Technology School of Agricultural Technology King Mongkut's Institute of Technology Ladkrabang Bangkok Thailand Department of Microbiology Faculty of Science Chulalongkorn University Bangkok Thailand Department of Infrastructure Engineering University of Melbourne Victoria Australia Department of Agricultural Engineering Faculty of Engineering Khon Kaen University Khon Kaen Thailand Department of Food Engineering School of Engineering King Mongkut's Institute of Technology Ladkrabang Bangkok Thailand Department of Agricultural Engineering Faculty of Engineering at Kanpangsan Kasetsart University Thailand Department of Computer Engineering Chulalongkorn University Bangkok Thailand
This research was to study the effect of the environment condition during image captured including temperature and relative humidity in the packaging house of the mango exporting factory and in the orchard on the emis... 详细信息
来源: 评论
Industrial Internet of Things: Implementations, challenges, and potential solutions across various industries
收藏 引用
computers in Industry 2025年 170卷
作者: Shaila Afrin Sabiha Jannat Rafa Maliha Kabir Tasfia Farah Md. Sakib Bin Alam Aiman Lameesa Shams Forruque Ahmed Amir H. Gandomi Science and Math Program Asian University for Women Chattogram 4000 Bangladesh Cell & Developmental Biology Program Medical College of Wisconsin Milwaukee WI 53226 USA Biomedical Sciences Program University of Kansas Medical Center Kansas City KS 66103 USA Department of Information Technology University of Information Technology and Sciences Dhaka 1212 Bangladesh Department of Computer Science American International University - Bangladesh (AIUB) Dhaka 1229 Bangladesh School of Mathematical Sciences Sunway University Bandar Sunway Petaling Jaya Selangor Darul Ehsan 47500 Malaysia Department of Mathematics & Physics North South University Dhaka 1229 Bangladesh Faculty of Engineering and Information Technology University of Technology Sydney Sydney NSW 2007 Australia University Research and Innovation Center (EKIK) Óbuda University Budapest 1034 Hungary Department of Computer Science Khazar University Mahsati 41 Baku Azerbaijan
The Industrial Internet of Things (IIoT) has emerged as a potent catalyst for transformation across many industries as a part of Industry 4.0. This review thoroughly examines IIoT applications, demonstrating how it en... 详细信息
来源: 评论
An approach for crop recommendation with uncertainty quantification based on machine learning for sustainable agricultural decision-making
Results in Engineering
收藏 引用
Results in Engineering 2025年 26卷
作者: Md. Sakib Bin Alam Vatcharaporn Esichaikul Aiman Lameesa Shams Forruque Ahmed Amir H. Gandomi Department of Information Technology University of Information Technology and Sciences (UITS) Dhaka 1212 Bangladesh Computer Science and Information Management Program School of Engineering and Technology Asian Institute of Technology Pathum Thani 12120 Thailand Department of Computer Science American International University-Bangladesh Dhaka 1229 Bangladesh School of Mathematical Sciences Sunway University Bandar Sunway Petaling Jaya 47500 Selangor Darul Ehsan Malaysia Department of Mathematics & Physics North South University Dhaka 1229 Bangladesh Faculty of Engineering and Information Technology University of Technology Sydney Sydney NSW 2007 Australia University Research and Innovation Center (EKIK) Óbuda University 1034 Budapest Hungary Department of Computer Science Khazar University Mahsati 41 Baku Azerbaijan
While machine learning (ML) models for crop recommendation have demonstrated high predictive accuracy, a critical gap persists in their practical reliability: the omission of uncertainty quantification. Existing studi... 详细信息
来源: 评论