咨询与建议

限定检索结果

文献类型

  • 139 篇 会议
  • 75 篇 期刊文献

馆藏范围

  • 214 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 155 篇 工学
    • 120 篇 计算机科学与技术...
    • 102 篇 软件工程
    • 24 篇 控制科学与工程
    • 23 篇 信息与通信工程
    • 13 篇 生物医学工程(可授...
    • 12 篇 生物工程
    • 10 篇 电气工程
    • 9 篇 光学工程
    • 6 篇 化学工程与技术
    • 5 篇 材料科学与工程(可...
    • 5 篇 航空宇航科学与技...
    • 4 篇 仪器科学与技术
    • 4 篇 土木工程
  • 81 篇 理学
    • 49 篇 数学
    • 24 篇 统计学(可授理学、...
    • 18 篇 生物学
    • 14 篇 物理学
    • 7 篇 化学
    • 4 篇 系统科学
  • 40 篇 管理学
    • 24 篇 图书情报与档案管...
    • 15 篇 管理科学与工程(可...
    • 8 篇 工商管理
  • 14 篇 医学
    • 12 篇 临床医学
    • 8 篇 基础医学(可授医学...
    • 4 篇 公共卫生与预防医...
    • 4 篇 药学(可授医学、理...
  • 11 篇 教育学
    • 11 篇 教育学
  • 10 篇 法学
    • 9 篇 社会学
  • 7 篇 文学
    • 6 篇 中国语言文学
    • 6 篇 外国语言文学
  • 5 篇 农学

主题

  • 10 篇 bayesian network...
  • 8 篇 computer science
  • 8 篇 students
  • 8 篇 sentiment analys...
  • 5 篇 semantics
  • 5 篇 feature extracti...
  • 5 篇 artificial intel...
  • 5 篇 intelligent syst...
  • 4 篇 learning algorit...
  • 4 篇 speech recogniti...
  • 4 篇 computer vision
  • 3 篇 conferences
  • 3 篇 machine translat...
  • 3 篇 reinforcement le...
  • 3 篇 markov processes
  • 3 篇 databases
  • 3 篇 machine learning
  • 3 篇 emotion recognit...
  • 3 篇 mathematical mod...
  • 3 篇 robustness

机构

  • 30 篇 intelligent syst...
  • 30 篇 intelligent syst...
  • 18 篇 department of co...
  • 16 篇 department of co...
  • 8 篇 decision systems...
  • 7 篇 intelligent syst...
  • 6 篇 intelligent syst...
  • 6 篇 intelligent cont...
  • 6 篇 department of co...
  • 5 篇 intelligent syst...
  • 5 篇 intelligent syst...
  • 4 篇 school of comput...
  • 4 篇 magna design net...
  • 4 篇 intelligent syst...
  • 4 篇 rudn university ...
  • 4 篇 school of law un...
  • 3 篇 school of law du...
  • 3 篇 department of co...
  • 3 篇 computer science...
  • 3 篇 dept. of compute...

作者

  • 23 篇 wiebe janyce
  • 15 篇 hauskrecht milos
  • 11 篇 druzdzel marek j...
  • 9 篇 wilson theresa
  • 9 篇 kovashka adriana
  • 8 篇 deng lingjia
  • 8 篇 hwa rebecca
  • 7 篇 ashley kevin d.
  • 7 篇 pollack martha e...
  • 7 篇 savelka jaromir
  • 7 篇 sicilia anthony
  • 6 篇 mikhail khachumo...
  • 6 篇 ashley kevin
  • 6 篇 litman diane
  • 6 篇 mohit behrang
  • 6 篇 somasundaran swa...
  • 5 篇 kveton branislav
  • 5 篇 khachumov mikhai...
  • 5 篇 hwang seong jae
  • 5 篇 buettner kyle

语言

  • 203 篇 英文
  • 10 篇 其他
  • 1 篇 中文
检索条件"机构=Computer Science and Intelligent Systems Program"
214 条 记 录,以下是91-100 订阅
排序:
Variational dual-tree framework for large-scale transition matrix approximation
Variational dual-tree framework for large-scale transition m...
收藏 引用
28th Conference on Uncertainty in Artificial Intelligence, UAI 2012
作者: Amizadeh, Saeed Thiesson, Bo Hauskrecht, Milos Intelligent Systems Program University of Pittsburgh Pittsburgh PA 15213 United States Microsoft Research Redmond WA 98052 United States Department of Computer Science University of Pittsburgh Pittsburgh PA 15213 United States
In recent years, non-parametric methods utilizing random walks on graphs have been used to solve a wide range of machine learning problems, but in their simplest form they do not scale well due to the quadratic comple... 详细信息
来源: 评论
ASSIST: Adaptive social support for information space traversal  07
ASSIST: Adaptive social support for information space traver...
收藏 引用
Hypertext 2007: 18th ACM Conference on Hypertext and Hypermedia, HT'07
作者: Farzan, Rosta Coyle, Maurice Freyne, Jill Brusilovsky, Peter Smyth, Barry University of Pittsburgh Intelligent Systems Program Pittsburgh PA 15260 United States University College Dublin School of Computer Science and Informatics Belfield Dublin 4 Ireland University of Pittsburgh School of Information Science Pittsburgh PA 15260 United States
Finding relevant information in a hyperspace has been a much studied problem for many years. With the emergence of so called Web 2.0 technologies we have seen the use of social systems for retrieval tasks increasing d... 详细信息
来源: 评论
Decomposition and Reorganization of Phonetic Information for Speaker Embedding Learning
收藏 引用
IEEE/ACM Transactions on Audio Speech and Language Processing 2023年 31卷 1745-1757页
作者: Hong, Qian-Bei Wu, Chung-Hsien Wang, Hsin-Min National Cheng Kung University and Academia Sinica Graduate Program of Multimedia Systems and Intelligent Computing Tainan701 Taiwan Academia Sinica Taipei115 Taiwan National Cheng Kung University Department of Computer Science and Information Engineering Tainan701401 Taiwan Academia Sinica Institute of Information Science Taipei115 Taiwan
Speech content is closely related to the stability of speaker embeddings in speaker verification tasks. In this paper, we propose a novel architecture based on self-constraint learning (SCL) and reconstruction task (R... 详细信息
来源: 评论
Argument graph classification via genetic programming and C4.5
Argument graph classification via genetic programming and C4...
收藏 引用
1st International Conference on Educational Data Mining, EDM 2008
作者: Lynch, Collin Ashley, Kevin D. Pinkwart, Niels Aleven, Vincent Intelligent Systems Program University of Pittsburgh United States School of Law University of Pittsburgh United States Department of Informatics Clausthal University of Technology Germany HCII School of Computer Science Carnegie Mellon University United States
In well-defined domains there exist well-accepted criteria for detecting good and bad student solutions. Many ITS implement these criteria characterize solutions and to give immediate feedback. While this has been sho... 详细信息
来源: 评论
Modeling dynamic systems with memory: What is the right time-order?
Modeling dynamic systems with memory: What is the right time...
收藏 引用
8th Bayesian Modeling ApplicationsWorkshop, BMAW 2011
作者: Lupínska-Dubicka, Anna Druzdzel, Marek J. Faculty of Computer Science Bialystok University of Technology Wiejska 45A 15-351 Bialystok Poland Decision Systems Laboratory School of Information Sciences and Intelligent Systems Program University of Pittsburgh Pittsburgh PA 15260 United States
Most practical uses of Dynamic Bayesian Networks (DBNs) involve temporal inuences of the first order, i.e., inuences between neighboring time steps. This choice is a convenient approximation inuenced by the existence ... 详细信息
来源: 评论
The estrous cycle modulates hippocampal spine dynamics, dendritic processing, and spatial coding
收藏 引用
Neuron 2025年
作者: Wolcott, Nora S. Redman, William T. Karpinska, Marie Jacobs, Emily G. Goard, Michael J. Department of Molecular Cellular and Developmental Biology University of California Santa Barbara Santa Barbara 93106 CA United States Interdepartmental Graduate Program in Dynamical Neuroscience University of California Santa Barbara Santa Barbara 93106 CA United States Intelligent Systems Center Johns Hopkins University Applied Physics Laboratory Laurel 20723 MD United States Department of Computer Science University of California Santa Barbara Santa Barbara 93106 CA United States Department of Psychological & Brain Sciences University of California Santa Barbara Santa Barbara 93106 CA United States Ann S. Bowers Women's Brain Health Initiative University of California Santa Barbara Santa Barbara 93106 CA United States Neuroscience Research Institute University of California Santa Barbara Santa Barbara 93106 CA United States
Histological evidence suggests that the estrous cycle exerts a powerful influence on CA1 neurons in the mammalian hippocampus. Decades have passed since this landmark observation, yet how the estrous cycle shapes dend... 详细信息
来源: 评论
Making large Cox's proportional hazard models tractable in Bayesian networks  8
Making large Cox's proportional hazard models tractable in B...
收藏 引用
8th International Conference on Probabilistic Graphical Models, PGM 2016
作者: Kraisangka, Jidapa Druzdzel, Marek J. Decision System Laboratory School of Information Sciences Intelligent Systems Program University of Pittsburgh PittsburghPA15260 United States Faculty of Computer Science Bialystok University of Technology Wiejska 45A Bialystok15-351 Poland
Cox's proportional hazard (CPH) model is a statistical technique that captures the interaction between a set of risk factors and an effect variable. While the CPH model is popular in survival analysis, Bayesian ne... 详细信息
来源: 评论
Learning discrete Bayesian network parameters from continuous data streams: What is the best strategy?
Learning discrete Bayesian network parameters from continuou...
收藏 引用
作者: Ratnapinda, Parot Druzdzel, Marek J. Decision Systems Laboratory School of Information Sciences and Intelligent Systems Program University of Pittsburgh PittsburghPA15260 United States Faculty of Science Information Technology Division Maejo University Chiang Mai50290 Thailand Faculty of Computer Science Bialystok University of Technology Wiejska 45A Bialystok15-351 Poland
We compare three approaches to learning numerical parameters of discrete Bayesian networks from continuous data streams: (1) the EM algorithm applied to all data, (2) the EM algorithm applied to data increments, and (... 详细信息
来源: 评论
Comparing user simulation models for dialog strategy learning
Comparing user simulation models for dialog strategy learnin...
收藏 引用
2007 Human Language Technology Conference of the North American Chapter of the Association of Computational Linguistics, NAACL-HLT 2007
作者: Ai, Hua Tetreault, Joel R. Litman, Diane J. University of Pittsburgh Intelligent Systems Program PittsburghPA15260 United States University of Pittsburgh LRDC PittsburghPA15260 United States University of Pittsburgh Dept. of Computer Science LRDC PittsburghPA15260 United States
This paper explores what kind of user simulation model is suitable for developing a training corpus for using Markov Decision Processes (MDPs) to automatically learn dialog strategies. Our results suggest that with sp... 详细信息
来源: 评论
OpinionFinder: A system for subjectivity analysis
OpinionFinder: A system for subjectivity analysis
收藏 引用
2005 Human Language Technology Conference and Conference on Empirical Methods in Natural Language Processing, HLT/EMNLP 2005
作者: Wilson, Theresa Hoffmann, Paul Somasundaran, Swapna Kessler, Jason Wiebe, Janyce Choi, Yejin Cardie, Claire Riloff, Ellen Patwardhan, Siddharth Intelligent Systems Program University of Pittsburgh PittsburghPA15260 United States Department of Computer Science University of Pittsburgh PittsburghPA15260 United States Department of Computer Science Cornell University IthacaNY14853 United States School of Computing University of Utah Salt Lake CityUT84112 United States
来源: 评论