咨询与建议

限定检索结果

文献类型

  • 139 篇 会议
  • 75 篇 期刊文献

馆藏范围

  • 214 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 155 篇 工学
    • 120 篇 计算机科学与技术...
    • 102 篇 软件工程
    • 24 篇 控制科学与工程
    • 23 篇 信息与通信工程
    • 13 篇 生物医学工程(可授...
    • 12 篇 生物工程
    • 10 篇 电气工程
    • 9 篇 光学工程
    • 6 篇 化学工程与技术
    • 5 篇 材料科学与工程(可...
    • 5 篇 航空宇航科学与技...
    • 4 篇 仪器科学与技术
    • 4 篇 土木工程
  • 81 篇 理学
    • 49 篇 数学
    • 24 篇 统计学(可授理学、...
    • 18 篇 生物学
    • 14 篇 物理学
    • 7 篇 化学
    • 4 篇 系统科学
  • 40 篇 管理学
    • 24 篇 图书情报与档案管...
    • 15 篇 管理科学与工程(可...
    • 8 篇 工商管理
  • 14 篇 医学
    • 12 篇 临床医学
    • 8 篇 基础医学(可授医学...
    • 4 篇 公共卫生与预防医...
    • 4 篇 药学(可授医学、理...
  • 11 篇 教育学
    • 11 篇 教育学
  • 10 篇 法学
    • 9 篇 社会学
  • 7 篇 文学
    • 6 篇 中国语言文学
    • 6 篇 外国语言文学
  • 5 篇 农学

主题

  • 10 篇 bayesian network...
  • 8 篇 computer science
  • 8 篇 students
  • 8 篇 sentiment analys...
  • 5 篇 semantics
  • 5 篇 feature extracti...
  • 5 篇 artificial intel...
  • 5 篇 intelligent syst...
  • 4 篇 learning algorit...
  • 4 篇 speech recogniti...
  • 4 篇 computer vision
  • 3 篇 conferences
  • 3 篇 machine translat...
  • 3 篇 reinforcement le...
  • 3 篇 markov processes
  • 3 篇 databases
  • 3 篇 machine learning
  • 3 篇 emotion recognit...
  • 3 篇 mathematical mod...
  • 3 篇 robustness

机构

  • 30 篇 intelligent syst...
  • 30 篇 intelligent syst...
  • 18 篇 department of co...
  • 16 篇 department of co...
  • 8 篇 decision systems...
  • 7 篇 intelligent syst...
  • 6 篇 intelligent syst...
  • 6 篇 intelligent cont...
  • 6 篇 department of co...
  • 5 篇 intelligent syst...
  • 5 篇 intelligent syst...
  • 4 篇 school of comput...
  • 4 篇 magna design net...
  • 4 篇 intelligent syst...
  • 4 篇 rudn university ...
  • 4 篇 school of law un...
  • 3 篇 school of law du...
  • 3 篇 department of co...
  • 3 篇 computer science...
  • 3 篇 dept. of compute...

作者

  • 23 篇 wiebe janyce
  • 15 篇 hauskrecht milos
  • 11 篇 druzdzel marek j...
  • 9 篇 wilson theresa
  • 9 篇 kovashka adriana
  • 8 篇 deng lingjia
  • 8 篇 hwa rebecca
  • 7 篇 ashley kevin d.
  • 7 篇 pollack martha e...
  • 7 篇 savelka jaromir
  • 7 篇 sicilia anthony
  • 6 篇 mikhail khachumo...
  • 6 篇 ashley kevin
  • 6 篇 litman diane
  • 6 篇 mohit behrang
  • 6 篇 somasundaran swa...
  • 5 篇 kveton branislav
  • 5 篇 khachumov mikhai...
  • 5 篇 hwang seong jae
  • 5 篇 buettner kyle

语言

  • 203 篇 英文
  • 10 篇 其他
  • 1 篇 中文
检索条件"机构=Computer Science and Intelligent Systems Program"
214 条 记 录,以下是131-140 订阅
排序:
Keyword annotation of biomedicai documents with graph-based similarity methods  2012
Keyword annotation of biomedicai documents with graph-based ...
收藏 引用
2012 IEEE International Conference on Bioinformatics and Biomedicine, BIBM2012
作者: Wang, Shuguang Hauskrecht, Milos Intelligent Systems Program University of Pittsburgh Pittsburgh PA United States Department of Computer Science University of Pittsburgh Pittsburgh PA United States
In this paper, we present a new approach that lets us extract, and represent relations among terms (concepts) in the documents and uses these relations to support various document analysis applications. Our approach w... 详细信息
来源: 评论
Factorized diffusion map approximation  15
Factorized diffusion map approximation
收藏 引用
15th International Conference on Artificial Intelligence and Statistics, AISTATS 2012
作者: Amizadeh, Saeed Valizadegan, Hamed Hauskrecht, Milos Intelligent Systems Program University of Pittsburgh PittsburghPA15213 United States Department of Computer Science University of Pittsburgh PittsburghPA15213 United States
Diffusion maps are among the most powerful Machine Learning tools to analyze and work with complex high-dimensional datasets. Unfortunately, the estimation of these maps from a finite sample is known to suffer from th... 详细信息
来源: 评论
Variational dual-tree framework for large-scale transition matrix approximation
Variational dual-tree framework for large-scale transition m...
收藏 引用
28th Conference on Uncertainty in Artificial Intelligence, UAI 2012
作者: Amizadeh, Saeed Thiesson, Bo Hauskrecht, Milos Intelligent Systems Program University of Pittsburgh Pittsburgh PA 15213 United States Microsoft Research Redmond WA 98052 United States Department of Computer Science University of Pittsburgh Pittsburgh PA 15213 United States
In recent years, non-parametric methods utilizing random walks on graphs have been used to solve a wide range of machine learning problems, but in their simplest form they do not scale well due to the quadratic comple... 详细信息
来源: 评论
Keyword annotation of biomedicai documents with graph-based similarity methods
Keyword annotation of biomedicai documents with graph-based ...
收藏 引用
IEEE International Conference on Bioinformatics and Biomedicine (BIBM)
作者: Shuguang Wang Milos Hauskrecht Intelligent Systems Program University of Pittsburgh Pittsburgh USA Department of Computer Science University of Pittsburgh Pittsburgh USA
In this paper, we present a new approach that lets us extract, and represent relations among terms (concepts) in the documents and uses these relations to support various document analysis applications. Our approach w... 详细信息
来源: 评论
The impact of social performance visualization on students
The impact of social performance visualization on students
收藏 引用
12th IEEE International Conference on Advanced Learning Technologies, ICALT 2012
作者: Falakmasir, Mohammad Hassan Hsiao, I.-Han Mazzola, Luca Grant, Nancy Brusilovsky, Peter Intelligent Systems Program University of Pittsburgh Pittsburgh PA United States School of Information Sciences University of Pittsburgh Pittsburgh PA United States Faculty of Communication Sciences University of Lugano Lugano Switzerland Department of Computer Information Science Community College of Allegheny County West Mifflin PA United States
Over the last 10 years two major research directions explored the benefits of visualizing student learning progress. One stream of research on learning performance visualization attempts to build a visual presentation... 详细信息
来源: 评论
A multivariate probabilistic method for comparing two clinical datasets  12
A multivariate probabilistic method for comparing two clinic...
收藏 引用
2nd ACM SIGHIT International Health Informatics Symposium, IHI'12
作者: Sverchkov, Yuriy Visweswaran, Shyam Clermont, Gilles Hauskrecht, Milos Cooper, Gregory F. Intelligent Systems Program University of Pittsburgh Pittsburgh PA 15260 United States Department of Biomedical Informatics University of Pittsburgh Pittsburgh PA 15260 United States Department of Computer Science University of Pittsburgh Pittsburgh PA 15260 United States Department of Critical Care Medicine University of Pittsburgh Pittsburgh PA 15260 United States
We present a novel method for obtaining a concise and mathematically grounded description of multivariate differences between a pair of clinical datasets. Often data collected under similar circumstances reect fundame... 详细信息
来源: 评论
The Impact of Social Performance Visualization on Students
The Impact of Social Performance Visualization on Students
收藏 引用
International Conference on Advanced Learning Technologies (ICALT)
作者: Mohammad Hassan Falakmasir I-Han Hsiao Luca Mazzola Nancy Grant Peter Brusilovsky Intelligent Systems Program University of Pittsburgh Pittsburgh PA USA School of Information Sciences University of Pittsburgh Pittsburgh PA USA Faculty of Communication Sciences University of Lugano Lugano Switzerland Department of Computer Information Science Community College of Allegheny West Mifflin PA USA
Over the last 10 years two major research directions explored the benefits of visualizing student learning progress. One stream of research on learning performance visualization attempts to build a visual presentation... 详细信息
来源: 评论
An efficient framework for constructing generalized locally-induced text metrics
An efficient framework for constructing generalized locally-...
收藏 引用
22nd International Joint Conference on Artificial Intelligence, IJCAI 2011
作者: Amizadeh, Saeed Wang, Shuguang Hauskrecht, Milos Intelligent Systems Program University of Pittsburgh United States Department of Computer Science University of Pittsburgh United States
In this paper, we propose a new framework for constructing text metrics which can be used to compare and support inferences among terms and sets of terms. Our metric is derived from data-driven kernels on graphs that ... 详细信息
来源: 评论
Does query-based diagnostics work?
Does query-based diagnostics work?
收藏 引用
8th Bayesian Modeling ApplicationsWorkshop, BMAW 2011
作者: Ratnapinda, Parot Druzdzel, Marek J. Decision Systems Laboratory School of Information Sciences and Intelligent Systems Program University of Pittsburgh Pittsburgh PA 15260 United States Faculty of Computer Science Bialystok University of Technology Wiejska 45A 15-351 Bialystok Poland
Query-based diagnostics (Agosta, Gardos, & Druzdzel, 2008) offers passive, incremental construction of diagnostic models that rest on the interaction between a diagnostician and a computer-based diagnostic system.... 详细信息
来源: 评论
Modeling dynamic systems with memory: What is the right time-order?
Modeling dynamic systems with memory: What is the right time...
收藏 引用
8th Bayesian Modeling ApplicationsWorkshop, BMAW 2011
作者: Lupínska-Dubicka, Anna Druzdzel, Marek J. Faculty of Computer Science Bialystok University of Technology Wiejska 45A 15-351 Bialystok Poland Decision Systems Laboratory School of Information Sciences and Intelligent Systems Program University of Pittsburgh Pittsburgh PA 15260 United States
Most practical uses of Dynamic Bayesian Networks (DBNs) involve temporal inuences of the first order, i.e., inuences between neighboring time steps. This choice is a convenient approximation inuenced by the existence ... 详细信息
来源: 评论