咨询与建议

限定检索结果

文献类型

  • 139 篇 会议
  • 75 篇 期刊文献

馆藏范围

  • 214 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 155 篇 工学
    • 120 篇 计算机科学与技术...
    • 102 篇 软件工程
    • 24 篇 控制科学与工程
    • 23 篇 信息与通信工程
    • 13 篇 生物医学工程(可授...
    • 12 篇 生物工程
    • 10 篇 电气工程
    • 9 篇 光学工程
    • 6 篇 化学工程与技术
    • 5 篇 材料科学与工程(可...
    • 5 篇 航空宇航科学与技...
    • 4 篇 仪器科学与技术
    • 4 篇 土木工程
  • 81 篇 理学
    • 49 篇 数学
    • 24 篇 统计学(可授理学、...
    • 18 篇 生物学
    • 14 篇 物理学
    • 7 篇 化学
    • 4 篇 系统科学
  • 40 篇 管理学
    • 24 篇 图书情报与档案管...
    • 15 篇 管理科学与工程(可...
    • 8 篇 工商管理
  • 14 篇 医学
    • 12 篇 临床医学
    • 8 篇 基础医学(可授医学...
    • 4 篇 公共卫生与预防医...
    • 4 篇 药学(可授医学、理...
  • 11 篇 教育学
    • 11 篇 教育学
  • 10 篇 法学
    • 9 篇 社会学
  • 7 篇 文学
    • 6 篇 中国语言文学
    • 6 篇 外国语言文学
  • 5 篇 农学

主题

  • 10 篇 bayesian network...
  • 8 篇 computer science
  • 8 篇 students
  • 8 篇 sentiment analys...
  • 5 篇 semantics
  • 5 篇 feature extracti...
  • 5 篇 artificial intel...
  • 5 篇 intelligent syst...
  • 4 篇 learning algorit...
  • 4 篇 speech recogniti...
  • 4 篇 computer vision
  • 3 篇 conferences
  • 3 篇 machine translat...
  • 3 篇 reinforcement le...
  • 3 篇 markov processes
  • 3 篇 databases
  • 3 篇 machine learning
  • 3 篇 emotion recognit...
  • 3 篇 mathematical mod...
  • 3 篇 robustness

机构

  • 30 篇 intelligent syst...
  • 30 篇 intelligent syst...
  • 18 篇 department of co...
  • 16 篇 department of co...
  • 8 篇 decision systems...
  • 7 篇 intelligent syst...
  • 6 篇 intelligent syst...
  • 6 篇 intelligent cont...
  • 6 篇 department of co...
  • 5 篇 intelligent syst...
  • 5 篇 intelligent syst...
  • 4 篇 school of comput...
  • 4 篇 magna design net...
  • 4 篇 intelligent syst...
  • 4 篇 rudn university ...
  • 4 篇 school of law un...
  • 3 篇 school of law du...
  • 3 篇 department of co...
  • 3 篇 computer science...
  • 3 篇 dept. of compute...

作者

  • 23 篇 wiebe janyce
  • 15 篇 hauskrecht milos
  • 11 篇 druzdzel marek j...
  • 9 篇 wilson theresa
  • 9 篇 kovashka adriana
  • 8 篇 deng lingjia
  • 8 篇 hwa rebecca
  • 7 篇 ashley kevin d.
  • 7 篇 pollack martha e...
  • 7 篇 savelka jaromir
  • 7 篇 sicilia anthony
  • 6 篇 mikhail khachumo...
  • 6 篇 ashley kevin
  • 6 篇 litman diane
  • 6 篇 mohit behrang
  • 6 篇 somasundaran swa...
  • 5 篇 kveton branislav
  • 5 篇 khachumov mikhai...
  • 5 篇 hwang seong jae
  • 5 篇 buettner kyle

语言

  • 203 篇 英文
  • 10 篇 其他
  • 1 篇 中文
检索条件"机构=Computer Science and Intelligent Systems Program"
214 条 记 录,以下是31-40 订阅
排序:
Solving factored MDPs with continuous and discrete variables
Solving factored MDPs with continuous and discrete variables
收藏 引用
19th National Conference on Artificial Intelligence
作者: Guestrin, Carlos Hauskrecht, Milos Kveton, Branislav Berkeley Research Center Intel Corporation Department of Computer Science University of Pittsburgh Intelligent Systems Program University of Pittsburgh
Although many real-world stochastic planning problems are more naturally formulated by hybrid models with both discrete and continuous variables, current state-of-the-art methods cannot adequately address these proble... 详细信息
来源: 评论
Dynamic Sampling-Based Meta-Learning Using Multilingual Acoustic Data for Under-Resourced Speech Recognition
收藏 引用
IEEE Access 2024年 12卷 106070-106083页
作者: Hsieh, I-Ting Wu, Chung-Hsien Zhao, Zhe-Hong National Cheng Kung University Graduate Program of Multimedia Systems and Intelligent Computing Tainan70101 Taiwan National Cheng Kung University Department of Computer Science and Information Engineering Tainan70101 Taiwan
Under-resourced automatic speech recognition (ASR) has become an active field of research and has experienced significant progress during the past decade. However, the performance of under-resourced ASR trained by exi... 详细信息
来源: 评论
Evaluating an intelligent tutoring system for making legal arguments with hypotheticals
收藏 引用
International Journal of Artificial Intelligence in Education 2009年 第4期19卷 401-424页
作者: Pinkwart, Niels Ashley, Kevin Lynch, Collin Aleven, Vincent Department of Informatics Clausthal University of Technology Clausthal-Zellerfeld Germany Learning Research and Development Center School of Law and Intelligent Systems Program University of Pittsburgh Pittsburgh PA United States Learning Research and Development Center Intelligent Systems Program University of Pittsburgh Pittsburgh PA United States Human-Computer Interaction Institute School of Computer Science Carnegie Mellon University Pittsburgh PA United States
Argumentation is a process that occurs often in ill-defined domains and that helps deal with the illdefinedness. Typically a notion of "correctness" for an argument in an ill-defined domain is impossible to ... 详细信息
来源: 评论
Learning to rank sentences for explaining statutory terms  4
Learning to rank sentences for explaining statutory terms
收藏 引用
4th Workshop on Automated Semantic Analysis of Information in Legal Text, ASAIL 2020
作者: Savelka, Jaromir Ashley, Kevin D. School of Computer Science Carnegie Mellon University United States School of Law Intelligent Systems Program University of Pittsburgh United States
We explore using classical feature engineering-based learning-to-rank approaches (LTR) to discover sentences for explaining the meaning of statutory terms. We compiled a list of 129 descriptive features that model ret... 详细信息
来源: 评论
Contingency Selection in Plan Generation
Contingency Selection in Plan Generation
收藏 引用
1996 AAAI Fall Symposium
作者: Onder, Nilufer Pollack, Martha E. Department of Computer Science University of Pittsburgh PittsburghPA15260 United States Department of Computer Science Intelligent Systems Program University of Pittsburgh PittsburghPA15260 United States
Akey question in conditional planning is: howmany, andwhich of the possible executionfailures shouldbe plannedfor? Onecannot, in general, plan for all the possible failures because the search spaceis too large. One ca...
来源: 评论
intelligent Constellation Generation based on Autoencoder Communication System  2
Intelligent Constellation Generation based on Autoencoder Co...
收藏 引用
2nd IEEE International Conference on computer Vision and Machine Intelligence, CVMI 2023
作者: Matsumoto, Kaisei Toma, Takao Oshiro, Shiho Wada, Tomohisa Computer Science and Intelligent Systems Program University of the Ryukyus Okinawa Japan Magna Design Net Inc Okinawa Japan Information Technology Center University of the Ryukyus Okinawa Japan Area of Computer Science and Intelligent Systems University of the Ryukyus Dept. of Engineering Okinawa Japan
This paper discusses intelligent constellation generation based on autoencoder communication system. In previous studies, the amplitude was set to fluctuate between r=0.0 and 1.0. However, when checking the generated ... 详细信息
来源: 评论
Scalability in Autoencoder-based OFDM Communication System  2
Scalability in Autoencoder-based OFDM Communication System
收藏 引用
2nd IEEE International Conference on computer Vision and Machine Intelligence, CVMI 2023
作者: Tsugawa, Seizan Toma, Takao Oshiro, Shiho Wada, Tomohisa University of the Ryukyus Computer Science and Intelligent Systems Program Okinawa Japan Magna Design Net Inc Okinawa Japan University of the Ryukyus Information Technology Center Okinawa Japan University of the Ryukyus Area of Computer Science and Intelligent Systems Dept. of Engineering Okinawa Japan
This paper proposed Scalability in Autoencoder-based Orthogonal Frequency Division Multiplexing(OFDM) communication system. In the previous research, only the comparison between IEEE802.11a and Autoencoder by the conv... 详细信息
来源: 评论
LEATHER: A Framework for Learning to Generate Human-like Text in Dialogue  2
LEATHER: A Framework for Learning to Generate Human-like Tex...
收藏 引用
2nd Conference of the Asia-Pacific Chapter of the Association for Computational Linguistics and the 12th International Joint Conference on Natural Language Processing, AACL-IJCNLP 2022
作者: Sicilia, Anthony Alikhani, Malihe Intelligent Systems Program University of Pittsburgh PittsburghPA United States Computer Science Department University of Pittsburgh PittsburghPA United States
Algorithms for text-generation in dialogue canbe misguided. For example, in task-orientedsettings, reinforcement learning that optimizesonly task-success can lead to abysmal lexical diversity. We hypothesize this is d... 详细信息
来源: 评论
Keyword annotation of biomedicai documents with graph-based similarity methods  2012
Keyword annotation of biomedicai documents with graph-based ...
收藏 引用
2012 IEEE International Conference on Bioinformatics and Biomedicine, BIBM2012
作者: Wang, Shuguang Hauskrecht, Milos Intelligent Systems Program University of Pittsburgh Pittsburgh PA United States Department of Computer Science University of Pittsburgh Pittsburgh PA United States
In this paper, we present a new approach that lets us extract, and represent relations among terms (concepts) in the documents and uses these relations to support various document analysis applications. Our approach w... 详细信息
来源: 评论
Artificial intelligence for modelling infectious disease epidemics
收藏 引用
Nature 2025年 第8051期638卷 623-635页
作者: Kraemer, Moritz U. G. Tsui, Joseph L.-H. Chang, Serina Y. Lytras, Spyros Khurana, Mark P. Vanderslott, Samantha Bajaj, Sumali Scheidwasser, Neil Curran-Sebastian, Jacob Liam Semenova, Elizaveta Zhang, Mengyan Unwin, H. Juliette T. Watson, Oliver J. Mills, Cathal Dasgupta, Abhishek Ferretti, Luca Scarpino, Samuel V. Koua, Etien Morgan, Oliver Tegally, Houriiyah Paquet, Ulrich Moutsianas, Loukas Fraser, Christophe Ferguson, Neil M. Topol, Eric J. Duchêne, David A. Stadler, Tanja Kingori, Patricia Parker, Michael J. Dominici, Francesca Shadbolt, Nigel Suchard, Marc A. Ratmann, Oliver Flaxman, Seth Holmes, Edward C. Gomez-Rodriguez, Manuel Schölkopf, Bernhard Donnelly, Christl A. Pybus, Oliver G. Cauchemez, Simon Bhatt, Samir Pandemic Sciences Institute University of Oxford Oxford United Kingdom Department of Biology University of Oxford Oxford United Kingdom Department of Electrical Engineering and Computer Science University of California Berkeley Berkeley CA United States UCSF UC Berkeley Joint Program in Computational Precision Health Berkeley CA United States Division of Systems Virology Department of Microbiology and Immunology The Institute of Medical Science The University of Tokyo Tokyo Japan Section of Epidemiology Department of Public Health University of Copenhagen Copenhagen Denmark Oxford Vaccine Group University of Oxford and NIHR Oxford Biomedical Research Centre Oxford United Kingdom Department of Epidemiology and Biostatistics Imperial College London London United Kingdom Department of Computer Science University of Oxford Oxford United Kingdom School of Mathematics University of Bristol Bristol United Kingdom MRC Centre for Global Infectious Disease Analysis School of Public Health Imperial College London London United Kingdom Department of Statistics University of Oxford Oxford United Kingdom Doctoral Training Centre University of Oxford Oxford United Kingdom Institute for Experiential AI Northeastern University MA Boston Thailand Santa Fe Institute Santa Fe NM United States World Health Organization Regional Office for Africa Brazzaville Congo WHO Hub for Pandemic and Epidemic Intelligence Health Emergencies Programme World Health Organization Berlin Germany Centre for Epidemic Response and Innovation (CERI) School for Data Science and Computational Thinking Stellenbosch University Stellenbosch South Africa African Institute for Mathematical Sciences (AIMS) South Africa Muizenberg Cape Town South Africa Genomics England London United Kingdom Scripps Research La Jolla CA United States Department of Biosystems Science and Engineering ETH Zürich Basel Switzerland Swiss Institute of Bioinformatics Lausanne Switzerland The Ethox Centre Nuffield
Infectious disease threats to individual and public health are numerous, varied and frequently unexpected. Artificial intelligence (AI) and related technologies, which are already supporting human decision making in e...
来源: 评论