咨询与建议

限定检索结果

文献类型

  • 30 篇 期刊文献
  • 7 篇 会议

馆藏范围

  • 37 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 29 篇 工学
    • 22 篇 计算机科学与技术...
    • 17 篇 软件工程
    • 9 篇 生物医学工程(可授...
    • 6 篇 生物工程
    • 3 篇 控制科学与工程
    • 2 篇 机械工程
    • 2 篇 光学工程
    • 2 篇 电子科学与技术(可...
    • 1 篇 仪器科学与技术
    • 1 篇 电气工程
    • 1 篇 信息与通信工程
    • 1 篇 交通运输工程
    • 1 篇 环境科学与工程(可...
  • 18 篇 理学
    • 12 篇 数学
    • 7 篇 统计学(可授理学、...
    • 6 篇 生物学
    • 2 篇 物理学
    • 2 篇 系统科学
  • 4 篇 医学
    • 4 篇 基础医学(可授医学...
    • 4 篇 临床医学
    • 4 篇 药学(可授医学、理...
    • 1 篇 公共卫生与预防医...
  • 4 篇 管理学
    • 3 篇 管理科学与工程(可...
    • 2 篇 工商管理
  • 3 篇 法学
    • 3 篇 社会学
  • 1 篇 经济学
    • 1 篇 应用经济学

主题

  • 2 篇 diffusion
  • 2 篇 integer programm...
  • 1 篇 mixture models
  • 1 篇 patient monitori...
  • 1 篇 eigenvalues and ...
  • 1 篇 research & devel...
  • 1 篇 support vector m...
  • 1 篇 deep learning
  • 1 篇 max-margin metho...
  • 1 篇 ant colony optim...
  • 1 篇 generative adver...
  • 1 篇 supervised
  • 1 篇 dimension reduct...
  • 1 篇 image segmentati...
  • 1 篇 parameter expans...
  • 1 篇 large dataset
  • 1 篇 genes
  • 1 篇 neural networks
  • 1 篇 set theory
  • 1 篇 information theo...

机构

  • 3 篇 departments of r...
  • 3 篇 lab crestview ra...
  • 3 篇 sheikh zayed ins...
  • 3 篇 cancer imaging p...
  • 3 篇 department of ap...
  • 3 篇 department of ne...
  • 3 篇 precisionfda u.s...
  • 3 篇 helmholtz ai hel...
  • 3 篇 department of ne...
  • 3 篇 booz allen hamil...
  • 2 篇 sage bionetworks...
  • 2 篇 yale university ...
  • 2 篇 microsoft resear...
  • 2 篇 mayo clinic mn u...
  • 2 篇 department of co...
  • 2 篇 department of ra...
  • 2 篇 department of ra...
  • 2 篇 dana-farber brig...
  • 2 篇 department of ee...
  • 2 篇 department of ra...

作者

  • 4 篇 linguraru marius...
  • 3 篇 li hongwei bran
  • 3 篇 reitman zachary
  • 3 篇 de bruijne marle...
  • 3 篇 ezhov ivan
  • 3 篇 meier zeke
  • 3 篇 wang chunhao
  • 3 篇 kazerooni anahit...
  • 3 篇 chung verena
  • 3 篇 kofler florian
  • 3 篇 pitkow xaq
  • 3 篇 dako farouk
  • 3 篇 moawad ahmed w.
  • 3 篇 calabrese evan
  • 3 篇 eddy james
  • 3 篇 familiar ariana
  • 3 篇 anazodo udunna
  • 3 篇 piraud marie
  • 3 篇 iglesias juan eu...
  • 2 篇 jones blaise v.

语言

  • 34 篇 英文
  • 3 篇 其他
检索条件"机构=Computer Science and Machine Learning Departments"
37 条 记 录,以下是31-40 订阅
排序:
Adaptive randomized dimension reduction on massive data
The Journal of Machine Learning Research
收藏 引用
The Journal of machine learning Research 2017年 第1期18卷
作者: Gregory Darnell Stoyan Georgiev Sayan Mukherjee Barbara E. Engelhardt Lewis-Sigler Institute Princeton University Princeton NJ Google Palo Alto CA Departments of Statistical Science Mathematics and Computer Science Duke University Durham NC Department of Computer Science Center for Statistics and Machine Learning Princeton University Princeton NJ
The scalability of statistical estimators is of increasing importance in modern applications. One approach to implementing scalable algorithms is to compress data into a low dimensional latent space using dimension re... 详细信息
来源: 评论
Author Correction: π-HuB: the proteomic navigator of the human body
收藏 引用
Nature 2025年 第8046期637卷 E22页
作者: Fuchu He Ruedi Aebersold Mark S Baker Xiuwu Bian Xiaochen Bo Daniel W Chan Cheng Chang Luonan Chen Xiangmei Chen Yu-Ju Chen Heping Cheng Ben C Collins Fernando Corrales Jürgen Cox Weinan E Jennifer E Van Eyk Jia Fan Pouya Faridi Daniel Figeys George Fu Gao Wen Gao Zu-Hua Gao Keisuke Goda Wilson Wen Bin Goh Dongfeng Gu Changjiang Guo Tiannan Guo Yuezhong He Albert J R Heck Henning Hermjakob Tony Hunter Narayanan Gopalakrishna Iyer Ying Jiang Connie R Jimenez Lokesh Joshi Neil L Kelleher Ming Li Yang Li Qingsong Lin Cui Hua Liu Fan Liu Guang-Hui Liu Yansheng Liu Zhihua Liu Teck Yew Low Ben Lu Matthias Mann Anming Meng Robert L Moritz Edouard Nice Guang Ning Gilbert S Omenn Christopher M Overall Giuseppe Palmisano Yaojin Peng Charles Pineau Terence Chuen Wai Poon Anthony W Purcell Jie Qiao Roger R Reddel Phillip J Robinson Paola Roncada Chris Sander Jiahao Sha Erwei Song Sanjeeva Srivastava Aihua Sun Siu Kwan Sze Chao Tang Liujun Tang Ruijun Tian Juan Antonio Vizcaíno Chanjuan Wang Chen Wang Xiaowen Wang Xinxing Wang Yan Wang Tobias Weiss Mathias Wilhelm Robert Winkler Bernd Wollscheid Limsoon Wong Linhai Xie Wei Xie Tao Xu Tianhao Xu Liying Yan Jing Yang Xiao Yang John Yates Tao Yun Qiwei Zhai Bing Zhang Hui Zhang Lihua Zhang Lingqiang Zhang Pingwen Zhang Yukui Zhang Yu Zi Zheng Qing Zhong Yunping Zhu State Key Laboratory of Medical Proteomics Beijing Proteome Research Center National Center for Protein Sciences (Beijing) Beijing Institute of Lifeomics Beijing China. hefc@***. International Academy of Phronesis Medicine (Guangdong) Guangdong China. hefc@***. Department of Biology Institute of Molecular Systems Biology ETH Zurich Zurich Switzerland. aebersold@imsb.biol.ethz.ch. Macquarie Medical School Macquarie University Sydney New South Wales Australia. Institute of Pathology and Southwest Cancer Center Southwest Hospital Third Military Medical University (Army Medical University) and Key Laboratory of Tumor Immunopathology Ministry of Education of China Chongqing China. Institute of Health Service and Transfusion Medicine Beijing China. Department of Pathology and The Sidney Kimmel Comprehensive Cancer Center Johns Hopkins University Baltimore MD USA. State Key Laboratory of Medical Proteomics Beijing Proteome Research Center National Center for Protein Sciences (Beijing) Beijing Institute of Lifeomics Beijing China. Key Laboratory of Systems Biology Center for Excellence in Molecular Cell Science Shanghai Institute of Biochemistry and Cell Biology Chinese Academy of Sciences Shanghai China. Department of Nephrology First Medical Center of Chinese PLA General Hospital Nephrology Institute of the Chinese People's Liberation Army State Key Laboratory of Kidney Diseases National Clinical Research Center for Kidney Diseases Beijing Key Laboratory of Kidney Disease Research Beijing China. Institute of Chemistry Academia Sinica Taipei China. National Biomedical Imaging Center State Key Laboratory of Membrane Biology Institute of Molecular Medicine Peking-Tsinghua Center for Life Sciences College of Future Technology Peking University Beijing China. School of Biological Sciences Queen's University of Belfast Belfast UK. Functional Proteomics Laboratory Centro Nacional de Biotecnología-CSIC Madrid Spain. Computational Systems Biochemistry Research Group Ma
来源: 评论
Bayesian group factor analysis with structured sparsity
The Journal of Machine Learning Research
收藏 引用
The Journal of machine learning Research 2016年 第1期17卷
作者: Kevin Murphy Bernhard Schölkopf Shiwen Zhao Chuan Gao Sayan Mukherjee Barbara E. Engelhardt Google MPI for Intelligent Systems Computational Biology and Bioinformatics Program Department of Statistical Science Duke University Durham NC Department of Statistical Science Duke University Durham NC Departments of Statistical Science Computer Science Mathematics Duke University Durham NC Department of Computer Science Center for Statistics and Machine Learning Princeton University Princeton NJ
Latent factor models are the canonical statistical tool for exploratory analyses of low-dimensional linear structure for a matrix of p features across n samples. We develop a structured Bayesian group factor analysis ... 详细信息
来源: 评论
Smoothing multivariate performance measures
The Journal of Machine Learning Research
收藏 引用
The Journal of machine learning Research 2012年 第1期13卷
作者: Xinhua Zhang Ankan Saha S. V. N. Vishwanathan Machine Learning Group NICTA Canberra Australia and Department of Computing Science University of Alberta Alberta Innovates Center for Machine Learning Edmonton Alberta Canada Department of Computer Science University of Chicago Chicago IL Departments of Statistics and Computer Science Purdue University West Lafayette IN
Optimizing multivariate performance measure is an important task in machine learning. Joachims (2005) introduced a Support Vector Method whose underlying optimization problem is commonly solved by cutting plane method... 详细信息
来源: 评论
AI Theory and Practice: A Discussion on Hard Challenges and Opportunities Ahead
收藏 引用
AI MAGAZINE 2010年 第3期31卷 103-114页
作者: Horvitz, Eric MICROSOFT RESEARCH INSTITUTE FOR ADVANCED COMPUTER STUDIES THE UNIVERSITY OF MARYLAND COLLEGE PARK THE MACHINE LEARNING AND COMPUTER SCIENCE DEPARTMENTS CARNEGIE MELLON UNIVERSITY
A special track on directions in artificial intelligence at a Microsoft Research Faculty Summit included a panel discussion on key challenges and opportunities ahead in AI theory and practice. This article captures th... 详细信息
来源: 评论
A Method for Reasoning with Structured and Continuous Attributes in the INLEN-2 Multistrategy Knowledge Discovery System  2
A Method for Reasoning with Structured and Continuous Attrib...
收藏 引用
2nd International Conference on Knowledge Discovery and Data Mining, KDD 1996
作者: Kaufman, Kenneth A. Michalski, Ryszard S. Machine Learning and Inference Laboratory George Mason University FairfaxVA22030 United States Gmu Departments of Computer Science and Systems Engineering Institute of Computer Science Polish Academy of Sciences Poland
Structured attributes have domains (value sets) that are partially ordered sets, typically *** attributes allow knowledge discovery programs to incorporate background knowledge about hierarchical relationships among a... 详细信息
来源: 评论
The AQ17-DCI system for data-driven constructive induction and its application to the analysis of world economics  9th
收藏 引用
9th International Symposium on Methodologies for Intelligent Systems, ISMIS 1996
作者: Bloedoru, Eric Michalski, Ryszard S. Machine Learning and Inference Laboratory George Mason University FairfaxVA United States GMU Departments of Computex Science and Systems Engineering the Institute of Computer Science at the Polish Academy of Sciences Warsaw Poland
Constructive induction divides the problem of learning an inductive hypothesis into two intertwined searches: one-for the "best" representation space, and two-for the "best" hypothesis in that spac... 详细信息
来源: 评论