咨询与建议

限定检索结果

文献类型

  • 5,079 篇 会议
  • 2,751 篇 期刊文献
  • 50 册 图书

馆藏范围

  • 7,879 篇 电子文献
  • 1 种 纸本馆藏

日期分布

学科分类号

  • 4,449 篇 工学
    • 2,596 篇 计算机科学与技术...
    • 2,225 篇 软件工程
    • 1,956 篇 控制科学与工程
    • 661 篇 信息与通信工程
    • 618 篇 机械工程
    • 584 篇 生物工程
    • 479 篇 光学工程
    • 461 篇 生物医学工程(可授...
    • 384 篇 电气工程
    • 379 篇 仪器科学与技术
    • 285 篇 电子科学与技术(可...
    • 217 篇 交通运输工程
    • 177 篇 力学(可授工学、理...
    • 167 篇 化学工程与技术
    • 156 篇 建筑学
    • 156 篇 土木工程
    • 155 篇 安全科学与工程
  • 2,243 篇 理学
    • 1,070 篇 数学
    • 691 篇 物理学
    • 620 篇 生物学
    • 375 篇 统计学(可授理学、...
    • 274 篇 系统科学
    • 168 篇 化学
  • 837 篇 管理学
    • 571 篇 管理科学与工程(可...
    • 298 篇 图书情报与档案管...
    • 266 篇 工商管理
  • 375 篇 医学
    • 339 篇 临床医学
    • 270 篇 基础医学(可授医学...
    • 196 篇 药学(可授医学、理...
  • 161 篇 法学
    • 153 篇 社会学
  • 86 篇 经济学
  • 69 篇 农学
  • 67 篇 教育学
  • 16 篇 军事学
  • 9 篇 艺术学
  • 7 篇 文学
  • 1 篇 哲学

主题

  • 469 篇 robot sensing sy...
  • 402 篇 robots
  • 396 篇 computer science
  • 353 篇 mobile robots
  • 270 篇 intelligent robo...
  • 230 篇 cameras
  • 208 篇 navigation
  • 202 篇 robot kinematics
  • 189 篇 laboratories
  • 188 篇 control systems
  • 152 篇 trajectory
  • 152 篇 feature extracti...
  • 149 篇 motion planning
  • 149 篇 robot vision sys...
  • 145 篇 orbital robotics
  • 140 篇 manipulators
  • 135 篇 computational mo...
  • 135 篇 robustness
  • 134 篇 humans
  • 129 篇 reinforcement le...

机构

  • 113 篇 shenzhen institu...
  • 84 篇 robotics institu...
  • 75 篇 robotics institu...
  • 61 篇 robotics institu...
  • 46 篇 robotics institu...
  • 44 篇 robotics laborat...
  • 44 篇 institutes for r...
  • 40 篇 institute of art...
  • 39 篇 college of compu...
  • 39 篇 department of el...
  • 36 篇 state key labora...
  • 34 篇 the robotics ins...
  • 30 篇 department of co...
  • 29 篇 shanghai key lab...
  • 29 篇 university of ch...
  • 27 篇 school of comput...
  • 27 篇 school of comput...
  • 26 篇 school of roboti...
  • 26 篇 robotics and aut...
  • 26 篇 robotics institu...

作者

  • 42 篇 shen linlin
  • 38 篇 g.s. sukhatme
  • 37 篇 zhang wenqiang
  • 34 篇 klaus schilling
  • 33 篇 o. khatib
  • 29 篇 huang jianwei
  • 29 篇 shuzhi sam ge
  • 27 篇 al-turjman fadi
  • 27 篇 dou qi
  • 26 篇 berns karsten
  • 25 篇 ge shuzhi sam
  • 24 篇 r.a. grupen
  • 22 篇 dushantha nalin ...
  • 22 篇 fadi al-turjman
  • 21 篇 pan wei
  • 20 篇 yang kailun
  • 20 篇 ramiz salama
  • 19 篇 g.a. bekey
  • 19 篇 liu ming
  • 19 篇 feldman dan

语言

  • 6,573 篇 英文
  • 1,272 篇 其他
  • 45 篇 中文
  • 1 篇 德文
  • 1 篇 法文
  • 1 篇 日文
  • 1 篇 朝鲜文
检索条件"机构=Computer Science and Robotics"
7880 条 记 录,以下是531-540 订阅
排序:
Deep Reinforcement Learning for Network Security Applications With A Safety Guide
Deep Reinforcement Learning for Network Security Application...
收藏 引用
2023 IEEE/CIC International Conference on Communications in China, ICCC 2023
作者: Liu, Zhibo Lu, Xiaozhen Chen, Yuhan Xiao, Yilin Xiao, Liang Bu, Yanling Nanjing University of Aeronautics and Astronautics College of Computer Science and Technology Nanjing China Shenzhen Institute of Artificial Intelligence and Robotics for Society Shenzhen China Xiamen University Department of Informatics and Communication Engineering Xiamen China
Most of the typical reinforcement learning algorithms help wireless devices choose the security policy such as the moving strategy and communication policy by exploring all the possible state-action pairs including th... 详细信息
来源: 评论
Fusion of Inertial Sensor Suit and Monocular Camera for 3D Human Pelvis Pose Estimation
Fusion of Inertial Sensor Suit and Monocular Camera for 3D H...
收藏 引用
IEEE International Workshop on Robot and Human Communication (ROMAN)
作者: Mihaela Popescu Kashmira Shinde Proneet Sharma Lisa Gutzeit Frank Kirchner Robotics Group Faculty of Mathematics and Computer Science University of Bremen Bremen Germany Robotics Innovation Center German Research Center for Artificial Intelligence (DFKI GmbH) Bremen Germany
In real-world scenarios, robots come closer to humans in many applications, sharing the same workspace or even manipulating the same objects. To ensure safe and intuitive collaboration, it is crucial to have an accura... 详细信息
来源: 评论
Grasp Anything: Combining Teacher-Augmented Policy Gradient Learning with Instance Segmentation to Grasp Arbitrary Objects
arXiv
收藏 引用
arXiv 2024年
作者: Mosbach, Malte Behnke, Sven The Autonomous Intelligent Systems group Computer Science Institute VI - Intelligent Systems and Robotics The Center for Robotics The Lamarr Institute for Machine Learning and Artificial Intelligence University of Bonn Germany
Interactive grasping from clutter, akin to human dexterity, is one of the longest-standing problems in robot learning. Challenges stem from the intricacies of visual perception, the demand for precise motor skills, an... 详细信息
来源: 评论
Optimizing Algorithms from Pairwise User Preferences
Optimizing Algorithms from Pairwise User Preferences
收藏 引用
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
作者: Leonid Keselman Katherine Shih Martial Hebert Aaron Steinfeld Robotics Institute School of Computer Science Carnegie Mellon University Pittsburgh PA USA
Typical black-box optimization approaches in robotics focus on learning from metric scores. However, that is not always possible, as not all developers have ground truth available. Learning appropriate robot behavior ...
来源: 评论
A Comparison of Prompt Engineering Techniques for Task Planning and Execution in Service robotics
A Comparison of Prompt Engineering Techniques for Task Plann...
收藏 引用
IEEE-RAS International Conference on Humanoid Robots
作者: Jonas Bode Bastian Pätzold Raphael Memmesheimer Sven Behnke Autonomous Intelligent Systems group Computer Science Institute VI – Intelligent Systems and Robotics Lamarr Institute for Machine Learning and Artificial Intelligence and Center for Robotics University of Bonn Germany
Recent advances in Large Language Models (LLMs) have been instrumental in autonomous robot control and human-robot interaction by leveraging their vast general knowledge and capabilities to understand and reason acros... 详细信息
来源: 评论
Intelligent Motion Planning for Collision Free Autonomous Docking of Satellite Emulation Platform Using Reinforcement Learning
收藏 引用
IFAC-PapersOnLine 2023年 第2期56卷 3354-3359页
作者: D. Athauda A. Banerjee S. Satpute A. Agha-Mohammadi G. Nikolakopoulos Department of Computer Science Electrical and Space Engineering Luleå University of Technology Robotics and AI group Department of Computer Science Electrical and Space Engineering Luleå University of Technology AI for Humanity Inc.
A reinforcement learning (RL) enabled intelligent motion planning for collision-free autonomous docking manoeuvre explicitly designed for a robotic floating satellite emulation platform is presented in this article. T... 详细信息
来源: 评论
Enabling Reachability Across Multiple Domains Without Controller Synchronization in SDN
收藏 引用
computers, Materials & Continua 2021年 第10期69卷 945-965页
作者: Nauman Khan Rosli Bin Salleh Ihsan Ali Zahid Khan Noman Mazhar Roobaea Alroobaea Fahad Almansour Usman Ali Department of Computer System and Technology Faculty of Computer Science and Information TechnologyUniversity of MalayaMalaysia Department of Computer Science and IT University of MalakandPakistan Robotics and Internet-of-Things Lab Prince Sultan UniversityRiyadhSaudi Arabia Department of Computer Science College of Computers and Information TechnologyTaif UniversityTaif21944Saudi Arabia Department of Computer Science College of Sciences and Arts RassQassim UniversityBuraydah51452Saudi Arabia
Software-defined networking(SDN)makes network agile and flexible due to its programmable *** extensive network has multiple domains in SDN for the scalability and performance of the ***,the inter-domain link is also c... 详细信息
来源: 评论
PhysORD: A Neuro-Symbolic Approach for Physics-infused Motion Prediction in Off-road Driving
PhysORD: A Neuro-Symbolic Approach for Physics-infused Motio...
收藏 引用
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
作者: Zhipeng Zhao Bowen Li Yi Du Taimeng Fu Chen Wang Department of Computer Science and Engineering Spatial AI & Robotics (SAIR) Lab Institute for Artificial Intelligence and Data Science University at Buffalo Buffalo NY USA Robotics Institute Carnegie Mellon University Pittsburgh PA USA
Motion prediction is critical for autonomous off-road driving, however, it presents significantly more challenges than on-road driving because of the complex interaction between the vehicle and the terrain. Traditiona... 详细信息
来源: 评论
DiffSSC: Semantic LiDAR Scan Completion using Denoising Diffusion Probabilistic Models
arXiv
收藏 引用
arXiv 2024年
作者: Cao, Helin Behnke, Sven The Autonomous Intelligent Systems group Computer Science Institute VI – Intelligent Systems and Robotics The Center for Robotics The Lamarr Institute for Machine Learning and Artificial Intelligence University of Bonn Germany
Perception systems play a crucial role in autonomous driving, incorporating multiple sensors and corresponding computer vision algorithms. 3D LiDAR sensors are widely used to capture sparse point clouds of the vehicle... 详细信息
来源: 评论
SLCF-Net: Sequential LiDAR-Camera Fusion for Semantic Scene Completion using a 3D Recurrent U-Net
arXiv
收藏 引用
arXiv 2024年
作者: Cao, Helin Behnke, Sven Autonomous Intelligent Systems group Computer Science Institute VI-Intelligent Systems and Robotics Center for Robotics and the Lamarr Institute for Machine Learning and Artificial Intelligence University of Bonn Germany
We introduce SLCF-Net, a novel approach for the Semantic Scene Completion (SSC) task that sequentially fuses LiDAR and camera data. It jointly estimates missing geometry and semantics in a scene from sequences of RGB ... 详细信息
来源: 评论