This paper introduces an advanced and efficient method for distributed drone-based fruit recognition and localization, tailored to satisfy the precision and security requirements of autonomous agricultural operations....
详细信息
This paper introduces an advanced and efficient method for distributed drone-based fruit recognition and localization, tailored to satisfy the precision and security requirements of autonomous agricultural operations. Our method incorporates depth information to ensure precise localization and utilizes a streamlined detection network centered on the RepVGG module. This module replaces the traditional C2f module, enhancing detection performance while maintaining speed. To bolster the detection of small, distant fruits in complex settings, we integrate Selective Kernel Attention (SKAttention) and a specialized small-target detection layer. This adaptation allows the system to manage difficult conditions, such as variable lighting and obstructive foliage. To reinforce security, the tasks of recognition and localization are distributed among multiple drones, enhancing resilience against tampering and data manipulation. This distribution also optimizes resource allocation through collaborative processing. The model remains lightweight and is optimized for rapid and accurate detection, which is essential for real-time applications. Our proposed system, validated with a D435 depth camera, achieves a mean Average Precision (mAP) of 0.943 and a frame rate of 169 FPS, which represents a significant improvement over the baseline by 0.039 percentage points and 25 FPS, respectively. Additionally, the average localization error is reduced to 0.82 cm, highlighting the model’s high precision. These enhancements render our system highly effective for secure, autonomous fruit-picking operations, effectively addressing significant performance and cybersecurity challenges in agriculture. This approach establishes a foundation for reliable, efficient, and secure distributed fruit-picking applications, facilitating the advancement of autonomous systems in contemporary agricultural practices.
Visual Commonsense Reasoning (VCR) is a cognitive task, challenging models to answer visual questions, and to explain the rationale behind their answers. While Large Language Models (LLMs) offer potential for this tas...
详细信息
Extreme weather caused by typhoons poses a severe threat to human life safety and socio-economic development, making accurate prediction of typhoon paths crucial. However, existing prediction models struggle to effect...
详细信息
Neural decoding plays a vital role in the interaction between the brain and the outside world. Our task in this paper is to decode the movement track of a finger directly based on the neural data. Existing neural deco...
详细信息
Multiple patterning lithography (MPL) has been introduced in the integrated circuits manufacturing industry to enhance feature density as the technology node advances. A crucial step of MPL is assigning layout feature...
详细信息
As smart grid technology rapidly advances,the vast amount of user data collected by smart meter presents significant challenges in data security and privacy *** research emphasizes data security and user privacy conce...
详细信息
As smart grid technology rapidly advances,the vast amount of user data collected by smart meter presents significant challenges in data security and privacy *** research emphasizes data security and user privacy concerns within smart ***,existing methods struggle with efficiency and security when processing large-scale *** efficient data processing with stringent privacy protection during data aggregation in smart grids remains an urgent *** paper proposes an AI-based multi-type data aggregation method designed to enhance aggregation efficiency and security by standardizing and normalizing various data *** approach optimizes data preprocessing,integrates Long Short-Term Memory(LSTM)networks for handling time-series data,and employs homomorphic encryption to safeguard user *** also explores the application of Boneh Lynn Shacham(BLS)signatures for user *** proposed scheme’s efficiency,security,and privacy protection capabilities are validated through rigorous security proofs and experimental analysis.
Traffic flow prediction is a critical yet challenging task due to the complex spatiotemporal dependencies in road networks. We propose MapsTSF, a novel framework that enhances traffic forecasting by integrating three ...
详细信息
We theoretically investigate chaotic dynamics in an optomechanical system composed of a whispering-gallery-mode(WGM)microresonator and a *** find that tuning the optical phase using a phase shifter and modifying the c...
详细信息
We theoretically investigate chaotic dynamics in an optomechanical system composed of a whispering-gallery-mode(WGM)microresonator and a *** find that tuning the optical phase using a phase shifter and modifying the coupling strength via a unidirectional waveguide(IWG)can induce chaotic *** underlying reason for this phenomenon is that adjusting the phase and coupling strength via the phase shifter and IWG bring the system close to an exceptional point(EP),where field localization dynamically enhances the optomechanical nonlinearity,leading to the generation of chaotic *** addition,due to the sensitivity of chaos to phase in the vicinity of the EP,we propose a theoretical scheme to measure the optical phase perturbations using *** work may offer an alternative approach to chaos generation with current experimental technology and provide theoretical guidance for optical signal processing and chaotic secure communication.
Visual Place Recognition(VPR)technology aims to use visual information to judge the location of agents,which plays an irreplaceable role in tasks such as loop closure detection and *** is well known that previous VPR ...
详细信息
Visual Place Recognition(VPR)technology aims to use visual information to judge the location of agents,which plays an irreplaceable role in tasks such as loop closure detection and *** is well known that previous VPR algorithms emphasize the extraction and integration of general image features,while ignoring the mining of salient features that play a key role in the discrimination of VPR *** this end,this paper proposes a Domain-invariant Information Extraction and Optimization Network(DIEONet)for *** core of the algorithm is a newly designed Domain-invariant Information Mining Module(DIMM)and a Multi-sample Joint Triplet Loss(MJT Loss).Specifically,DIMM incorporates the interdependence between different spatial regions of the feature map in the cascaded convolutional unit group,which enhances the model’s attention to the domain-invariant static object *** Loss introduces the“joint processing of multiple samples”mechanism into the original triplet loss,and adds a new distance constraint term for“positive and negative”samples,so that the model can avoid falling into local optimum during *** demonstrate the effectiveness of our algorithm by conducting extensive experiments on several authoritative *** particular,the proposed method achieves the best performance on the TokyoTM dataset with a Recall@1 metric of 92.89%.
In hyperspectral remote sensing imagery, pixel interactions within defined spatial extents result in the mixing of adjacent pixels. Additionally, the high similarity of adjacent spectra leads to information redundancy...
详细信息
暂无评论