Partial maximum satisfiability(PMS) is a significant generalization of Boolean satisfiability(SAT) and maximum satisfiability(MaxSAT), by introducing hard clauses and soft clauses. Compared with SAT and MaxSAT, the PM...
详细信息
Partial maximum satisfiability(PMS) is a significant generalization of Boolean satisfiability(SAT) and maximum satisfiability(MaxSAT), by introducing hard clauses and soft clauses. Compared with SAT and MaxSAT, the PMS problem has more real-world applications where both hard and soft constraints are involved. Local search is an effective incomplete method for solving PMS and is useful for important domains where good-quality solutions are desired within reasonable *** local search PMS solvers, the approach for initial assignment generation is crucial because its effectiveness significantly affects practical performance. In this study, we propose a novel initial assignment prediction approach, called InitPMS. When predicting an assignment for PMS, InitPMS considers the specific structure of PMS instances, i.e., distinguishing hard and soft clauses. Our experiments on extensive PMS instances from MaxSAT evaluations(MSEs) 2020 and 2021 show that InitPMS significantly boosts the performance of five state-of-the-art local search PMS solvers, demonstrating its generality. In addition,our results indicate that incorporating InitPMS could improve the performance of one of the best incomplete PMS solvers in MaxSAT Evaluation 2021, indicating that InitPMS might help advance the state of the art in PMS solving.
Partial-label learning(PLL) is a typical problem of weakly supervised learning, where each training instance is annotated with a set of candidate labels. Self-training PLL models achieve state-of-the-art performance b...
详细信息
Partial-label learning(PLL) is a typical problem of weakly supervised learning, where each training instance is annotated with a set of candidate labels. Self-training PLL models achieve state-of-the-art performance but suffer from error accumulation problems caused by mistakenly disambiguated instances. Although co-training can alleviate this issue by training two networks simultaneously and allowing them to interact with each other, most existing co-training methods train two structurally identical networks with the same task, i.e., are symmetric, rendering it insufficient for them to correct each other due to their similar limitations. Therefore, in this paper, we propose an asymmetric dual-task co-training PLL model called AsyCo,which forces its two networks, i.e., a disambiguation network and an auxiliary network, to learn from different views explicitly by optimizing distinct tasks. Specifically, the disambiguation network is trained with a self-training PLL task to learn label confidence, while the auxiliary network is trained in a supervised learning paradigm to learn from the noisy pairwise similarity labels that are constructed according to the learned label confidence. Finally, the error accumulation problem is mitigated via information distillation and confidence refinement. Extensive experiments on both uniform and instance-dependent partially labeled datasets demonstrate the effectiveness of AsyCo.
The combination of contextual side information and search is a powerful paradigm in the scope of artificial intelligence. The prior knowledge enables the identification of possible solutions but may be imperfect. Cont...
详细信息
The combination of contextual side information and search is a powerful paradigm in the scope of artificial intelligence. The prior knowledge enables the identification of possible solutions but may be imperfect. Contextual information can arise naturally, for example in game AI where prior knowledge is used to bias move decisions. In this work we investigate the problem of taking quantum advantage of contextual information, especially searching with prior knowledge. We propose a new generalization of Grover's search algorithm that achieves the optimal expected success probability of finding the solution if the number of queries is fixed. Experiments on small-scale quantum circuits verify the advantage of our algorithm. Since contextual information exists widely, our method has wide applications. We take game tree search as an example.
Real-time systems are widely implemented in the Internet of Things(IoT) and safety-critical systems, both of which have generated enormous social value. Aiming at the classic schedulability analysis problem in real-ti...
详细信息
Real-time systems are widely implemented in the Internet of Things(IoT) and safety-critical systems, both of which have generated enormous social value. Aiming at the classic schedulability analysis problem in real-time systems, we proposed an exact Boolean analysis based on interference(EBAI) for schedulability analysis in real-time systems. EBAI is based on worst-case interference time(WCIT), which considers both the release jitter and blocking time of the task. We improved the efficiency of the three existing tests and provided a comprehensive summary of related research results in the field. Abundant experiments were conducted to compare EBAI with other related results. Our evaluation showed that in certain cases, the runtime gain achieved using our analysis method may exceed 73% compared to the stateof-the-art schedulability test. Furthermore, the benefits obtained from our tests grew with the number of tasks, reaching a level suitable for practical application. EBAI is oriented to the five-tuple real-time task model with stronger expression ability and possesses a low runtime overhead. These characteristics make it applicable in various real-time systems such as spacecraft, autonomous vehicles, industrial robots, and traffic command systems.
Predicting RNA binding protein(RBP) binding sites on circular RNAs(circ RNAs) is a fundamental step to understand their interaction mechanism. Numerous computational methods are developed to solve this problem, but th...
详细信息
Predicting RNA binding protein(RBP) binding sites on circular RNAs(circ RNAs) is a fundamental step to understand their interaction mechanism. Numerous computational methods are developed to solve this problem, but they cannot fully learn the features. Therefore, we propose circ-CNNED, a convolutional neural network(CNN)-based encoding and decoding framework. We first adopt two encoding methods to obtain two original matrices. We preprocess them using CNN before fusion. To capture the feature dependencies, we utilize temporal convolutional network(TCN) and CNN to construct encoding and decoding blocks, respectively. Then we introduce global expectation pooling to learn latent information and enhance the robustness of circ-CNNED. We perform circ-CNNED across 37 datasets to evaluate its effect. The comparison and ablation experiments demonstrate that our method is superior. In addition, motif enrichment analysis on four datasets helps us to explore the reason for performance improvement of circ-CNNED.
The critical node problem(CNP)aims to deal with critical node identification in a graph,which has extensive applications in many *** CNP is a challenging task due to its computational complexity,and it attracts much a...
详细信息
The critical node problem(CNP)aims to deal with critical node identification in a graph,which has extensive applications in many *** CNP is a challenging task due to its computational complexity,and it attracts much attention from both academia and *** this paper,we propose a population-based heuristic search algorithm called CPHS(Cut Point Based Heuristic Search)to solve CNP,which integrates two main *** first one is a cut point based greedy strategy in the local search,and the second one involves the functions used to update the solution pool of the ***,a mutation strategy is applied to solutions with probability based on the overall average similarity to maintain the diversity of the solution *** are performed on a synthetic benchmark,a real-world benchmark,and a large-scale network benchmark to evaluate our *** with state-of-the-art algorithms,our algorithm has better performance in terms of both solution quality and run time on all the three benchmarks.
Operators(such as Conv and ReLU) play an important role in deep neural networks. Every neural network is composed of a series of differentiable operators. However, existing AI benchmarks mainly focus on accessing mode...
详细信息
Operators(such as Conv and ReLU) play an important role in deep neural networks. Every neural network is composed of a series of differentiable operators. However, existing AI benchmarks mainly focus on accessing model training and inference performance of deep learning systems on specific models. To help GPU hardware find computing bottlenecks and intuitively evaluate GPU performance on specific deep learning tasks, this paper focuses on evaluating GPU performance at the operator level. We statistically analyze the information of operators on 12 representative deep learning models from six prominent AI tasks and provide an operator dataset to show the different importance of various types of operators in different networks. An operator-level benchmark, OpBench, is proposed on the basis of this dataset, allowing users to choose from a given range of models and set the input sizes according to their demands. This benchmark offers a detailed operator-level performance report for AI and hardware developers. We also evaluate four GPU models on OpBench and find that their performances differ on various types of operators and are not fully consistent with the performance metric FLOPS(floating point operations per second).
With the advancements in parameter-efficient transfer learning techniques,it has become feasible to leverage large pre-trained language models for downstream tasks under low-cost and low-resource ***,applying this tec...
详细信息
With the advancements in parameter-efficient transfer learning techniques,it has become feasible to leverage large pre-trained language models for downstream tasks under low-cost and low-resource ***,applying this technique to multimodal knowledge transfer introduces a significant challenge:ensuring alignment across modalities while minimizing the number of additional parameters required for downstream task *** paper introduces UniTrans,a framework aimed at facilitating efficient knowledge transfer across multiple *** leverages Vector-based Cross-modal Random Matrix Adaptation to enable fine-tuning with minimal parameter *** further enhance modality alignment,we introduce two key components:the Multimodal Consistency Alignment Module and the Query-Augmentation Side Network,specifically optimized for scenarios with extremely limited trainable *** evaluations on various cross-modal downstream tasks demonstrate that our approach surpasses state-of-the-art methods while using just 5%of their trainable ***,it achieves superior performance compared to fully fine-tuned models on certain benchmarks.
Dexterous robot manipulation has shone in complex industrial scenarios, where multiple manipulators, or fingers, cooperate to grasp and manipulate objects. When encountering multi-objective optimization with system co...
详细信息
Dexterous robot manipulation has shone in complex industrial scenarios, where multiple manipulators, or fingers, cooperate to grasp and manipulate objects. When encountering multi-objective optimization with system constraints in such scenarios, model predictive control(MPC) has demonstrated exceptional performance in complex multi-robot manipulation tasks involving multi-objective optimization with system constraints. However, in such scenarios, the substantial computational load required to solve the optimal control problem(OCP) at each triggering instant can lead to significant delays between state sampling and control application, hindering real-time performance. To address these challenges, this paper introduces a novel robust tube-based smooth MPC approach for two fundamental manipulation tasks: reaching a given target and tracking a reference trajectory. By predicting the successor state as the initial condition for imminent OCP solving, we can solve the forthcoming OCP ahead of time, alleviating delay effects. Additionally,we establish an upper bound for linearizing the original nonlinear system, reducing OCP complexity and enhancing response speed. Grounded in tube-based MPC theory, the recursive feasibility and closed-loop stability amidst constraints and disturbances are ensured. Empirical validation is provided through two numerical simulations and two real-world dexterous robot manipulation tasks, which shows that the seamless control input by our methods can effectively enhance the solving efficiency and control performance when compared to conventional time-triggered MPC strategies.
CircRNA-disease association(CDA) can provide a new direction for the treatment of diseases. However,traditional biological experiment is time-consuming and expensive, this urges us to propose the reliable computationa...
详细信息
CircRNA-disease association(CDA) can provide a new direction for the treatment of diseases. However,traditional biological experiment is time-consuming and expensive, this urges us to propose the reliable computational model to predict the associations between circRNAs and diseases. And there is existing more and more evidence indicates that the combination of multi-biomolecular information can improve the prediction accuracy. We propose a novel computational model for CDA prediction named MBCDA, we collect the multi-biomolecular information including circRNA, disease, miRNA and lncRNA based on 6 databases, and construct three heterogeneous network among them, then the multi-heads graph attention networks are applied to these three networks to extract the features of circRNAs and diseases from different views, the obtained features are put into variational graph auto-encoder(VGAE) network to learn the latent distributions of the nodes, a fully connected neural network is adopted to further process the output of VGAE and uses sigmoid function to obtain the predicted probabilities of circRNA-disease *** a result, MBCDA achieved the values of AUC and AUPR under 5-fold cross-validation of 0.893 and 0.887. MBCDA was applied to the analysis of the top-25 predicted associations between circRNAs and diseases, these experimental results show that our proposed MBCDA is a powerful computational model for CDA prediction.
暂无评论