In today’s era, smartphones are used in daily lives because they are ubiquitous and can be customized by installing third-party apps. As a result, the menaces because of these apps, which are potentially risky for u...
详细信息
Multimodal sentiment analysis (MSA) seeks to understand human affection by leveraging signals from multiple modalities. A core challenge in MSA is the effective extraction of sentimental relations between these signal...
详细信息
Social robot accounts controlled by artificial intelligence or humans are active in social networks,bringing negative impacts to network security and social *** social robot detection methods based on graph neural net...
详细信息
Social robot accounts controlled by artificial intelligence or humans are active in social networks,bringing negative impacts to network security and social *** social robot detection methods based on graph neural networks suffer from the problem of many social network nodes and complex relationships,which makes it difficult to accurately describe the difference between the topological relations of nodes,resulting in low detection accuracy of social *** paper proposes a social robot detection method with the use of an improved neural ***,social relationship subgraphs are constructed by leveraging the user’s social network to disentangle intricate social relationships ***,a linear modulated graph attention residual network model is devised to extract the node and network topology features of the social relation subgraph,thereby generating comprehensive social relation subgraph features,and the feature-wise linear modulation module of the model can better learn the differences between the ***,user text content and behavioral gene sequences are extracted to construct social behavioral features combined with the social relationship subgraph ***,social robots can be more accurately identified by combining user behavioral and relationship *** carrying out experimental studies based on the publicly available datasets TwiBot-20 and Cresci-15,the suggested method’s detection accuracies can achieve 86.73%and 97.86%,*** with the existing mainstream approaches,the accuracy of the proposed method is 2.2%and 1.35%higher on the two *** results show that the method proposed in this paper can effectively detect social robots and maintain a healthy ecological environment of social networks.
With the prevalence of machine learning in malware defense,hackers have tried to attack machine learning models to evade *** is generally difficult to explore the details of malware detection models,hackers can adopt ...
详细信息
With the prevalence of machine learning in malware defense,hackers have tried to attack machine learning models to evade *** is generally difficult to explore the details of malware detection models,hackers can adopt fuzzing attack to manipulate the features of the malware closer to benign programs on the premise of retaining their *** this paper,attack and defense methods on malware detection models based on machine learning algorithms were ***,we designed a fuzzing attack method by randomly modifying features to evade *** fuzzing attack can effectively descend the accuracy of machine learning model with single *** an adversarial malware detection model MaliFuzz is proposed to defend fuzzing *** from the ordinary single feature detection model,the combined features by static and dynamic analysis to improve the defense ability are *** experiment results show that the adversarial malware detection model with combined features can deal with the *** methods designed in this paper have great significance in improving the security of malware detection models and have good application prospects.
In the field of computer-aided drug discovery, identifying promising drug candidates from small molecule libraries requires meaningful molecular embeddings for downstream tasks, such as property prediction. However, o...
详细信息
In the era of advanced machine learning techniques,the development of accurate predictive models for complex medical conditions,such as thyroid cancer,has shown remarkable *** predictivemodels for thyroid cancer enhan...
详细信息
In the era of advanced machine learning techniques,the development of accurate predictive models for complex medical conditions,such as thyroid cancer,has shown remarkable *** predictivemodels for thyroid cancer enhance early detection,improve resource allocation,and reduce ***,the widespread adoption of these models in clinical practice demands predictive performance along with interpretability and *** paper proposes a novel association-rule based feature-integratedmachine learning model which shows better classification and prediction accuracy than present *** study also focuses on the application of SHapley Additive exPlanations(SHAP)values as a powerful tool for explaining thyroid cancer prediction *** the proposed method,the association-rule based feature integration framework identifies frequently occurring attribute combinations in the *** original dataset is used in trainingmachine learning models,and further used in generating SHAP values *** the next phase,the dataset is integrated with the dominant feature sets identified through association-rule based *** new integrated dataset is used in re-training the machine learning *** new SHAP values generated from these models help in validating the contributions of feature sets in predicting *** conventional machine learning models lack interpretability,which can hinder their integration into clinical decision-making *** this study,the SHAP values are introduced along with association-rule based feature integration as a comprehensive framework for understanding the contributions of feature sets inmodelling the *** study discusses the importance of reliable predictive models for early diagnosis of thyroid cancer,and a validation framework of *** proposed model shows an accuracy of 93.48%.Performance metrics such as precision,recall,F1-score,and the area un
In recent years, deep neural networks (DNNs) have made significant progress on face recognition (FR). However, DNNs have been found to be vulnerable to adversarial examples, leading to fatal consequences in real-world...
详细信息
Thyroid nodules,a common disorder in the endocrine system,require accurate segmentation in ultrasound images for effective diagnosis and ***,achieving precise segmentation remains a challenge due to various factors,in...
详细信息
Thyroid nodules,a common disorder in the endocrine system,require accurate segmentation in ultrasound images for effective diagnosis and ***,achieving precise segmentation remains a challenge due to various factors,including scattering noise,low contrast,and limited resolution in ultrasound *** existing segmentation models have made progress,they still suffer from several limitations,such as high error rates,low generalizability,overfitting,limited feature learning capability,*** address these challenges,this paper proposes a Multi-level Relation Transformer-based U-Net(MLRT-UNet)to improve thyroid nodule *** MLRTUNet leverages a novel Relation Transformer,which processes images at multiple scales,overcoming the limitations of traditional encoding *** transformer integrates both local and global features effectively through selfattention and cross-attention units,capturing intricate relationships within the *** approach also introduces a Co-operative Transformer Fusion(CTF)module to combine multi-scale features from different encoding layers,enhancing the model’s ability to capture complex patterns in the ***,the Relation Transformer block enhances long-distance dependencies during the decoding process,improving segmentation *** results showthat the MLRT-UNet achieves high segmentation accuracy,reaching 98.2% on the Digital Database Thyroid Image(DDT)dataset,97.8% on the Thyroid Nodule 3493(TG3K)dataset,and 98.2% on the Thyroid Nodule3K(TN3K)*** findings demonstrate that the proposed method significantly enhances the accuracy of thyroid nodule segmentation,addressing the limitations of existing models.
Advancements in Natural Language Processing and Deep Learning techniques have significantly pro-pelled the automation of Legal Judgment Prediction,achieving remarkable progress in legal *** of the existing research wo...
详细信息
Advancements in Natural Language Processing and Deep Learning techniques have significantly pro-pelled the automation of Legal Judgment Prediction,achieving remarkable progress in legal *** of the existing research works on Legal Judgment Prediction(LJP)use traditional optimization algorithms in deep learning techniques falling into local *** research article focuses on using the modified Pelican Optimization method which mimics the collective behavior of Pelicans in the exploration and exploitation phase during cooperative food ***,the selection of search agents within a boundary is done randomly,which increases the time required to achieve global *** address this,the proposed Chaotic Opposition Learning-based Pelican Optimization(COLPO)method incorporates the concept of Opposition-Based Learning combined with a chaotic cubic function,enabling deterministic selection of random numbers and reducing the number of iterations needed to reach global ***,the LJP approach in this work uses improved semantic similarity and entropy features to train a hybrid classifier combining Bi-GRU and Deep *** output scores are fused using improved score level fusion to boost prediction *** proposed COLPO method experiments with real-time Madras High Court criminal cases(Dataset 1)and the Supreme Court of India database(Dataset 2),and its performance is compared with nature-inspired algorithms such as Sparrow Search Algorithm(SSA),COOT,Spider Monkey Optimization(SMO),Pelican Optimization Algorithm(POA),as well as baseline classifier models and transformer neural *** results show that the proposed hybrid classifier with COLPO outperforms other cutting-edge LJP algorithms achieving 93.4%and 94.24%accuracy,respectively.
In this paper,a robust and consistent COVID-19 emergency decision-making approach is proposed based on q-rung linear diophantine fuzzy set(q-RLDFS),differential evolutionary(DE)optimization principles,and evidential r...
详细信息
In this paper,a robust and consistent COVID-19 emergency decision-making approach is proposed based on q-rung linear diophantine fuzzy set(q-RLDFS),differential evolutionary(DE)optimization principles,and evidential reasoning(ER)*** proposed approach uses q-RLDFS in order to represent the evaluating values of the alternatives corresponding to the *** optimization is used to obtain the optimal weights of the attributes,and ER methodology is used to compute the aggregated q-rung linear diophantine fuzzy values(q-RLDFVs)of each *** the score values of alternatives are computed based on the aggregated *** alternative with the maximum score value is selected as a better *** applicability of the proposed approach has been illustrated in COVID-19 emergency decision-making system and sustainable energy planning ***,we have validated the proposed approach with a numerical ***,a comparative study is provided with the existing models,where the proposed approach is found to be robust to perform better and consistent in uncertain environments.
暂无评论