The common problem of low strength-ductility matching prevails in near-αhigh-temperature titanium matrix composites(TMCs).In this work,the design strategy of ultrafine grains and dispersed(Ti,Zr)_(6)Si_(3) nanoprecip...
详细信息
The common problem of low strength-ductility matching prevails in near-αhigh-temperature titanium matrix composites(TMCs).In this work,the design strategy of ultrafine grains and dispersed(Ti,Zr)_(6)Si_(3) nanoprecipitates in the microstructure of TiB_(w)/nearα-Ti composites via low-temperature isothermal mul-tidirectional forging(IMDF),is expected to break the trade-offdilemma between strength and *** results show that with the decrease in the temperature of IMDF,the grain scale decreased from 0.98 to 0.59μm,and the location of silicide precipitation shifted from phase boundaries and grain boundaries toα-grain boundaries and intracrystalline *** experiments confirm that the local segregation of Si and the temperature of thermomechanical deformation are the key factors affecting the precipitation behavior of *** the decrease of the deformation temperature,the precipitation mechanism of silicides changes from a single diffusion-controlled precipitation to the coupling of two mechanisms,namely,elemental diffusion and dislocation-assisted nucleation,which facilitates the successive precip-itation of nanometer-sized silicides at the grain boundaries and in the inner *** ultimate ten-sile strength(UTS)and elongation of the composites were substantially increased after IMDF at 950 and 800℃,especially the excellent performance at 800℃,where the strength reached 1320.3 MPa and the elongation was 5.8%.The room and high-temperature strengthening and failure mechanisms of the com-posites are analyzed and discussed,and the yield strength(YS)increments provided by various strength-ening mechanisms at room temperature are quantified,aiming to provide a potential preparation strategy for the synergistic strengthening of near-αTMCs with ultrafine grains and nanoparticles.
Background: Docking mechanism ground simulation test technology has been a significant issue in the aerospace industry. Docking mechanisms must pass various conventional evaluation tests as a class of electromechanica...
详细信息
In the analysis of drone aerial images, object detection tasks are particularly challenging, especially in the presence of complex terrain structures, extreme differences in target sizes, suboptimal shooting angles, a...
详细信息
In the analysis of drone aerial images, object detection tasks are particularly challenging, especially in the presence of complex terrain structures, extreme differences in target sizes, suboptimal shooting angles, and varying lighting conditions, all of which exacerbate the difficulty of recognition. In recent years, the DETR model based on the Transformer architecture has eliminated traditional post-processing steps such as NMS(Non-Maximum Suppression), thereby simplifying the object detection process and improving detection accuracy, which has garnered widespread attention in the academic community. However, DETR has limitations such as slow training convergence, difficulty in query optimization, and high computational costs, which hinder its application in practical fields. To address these issues, this paper proposes a new object detection model called OptiDETR. This model first employs a more efficient hybrid encoder to replace the traditional Transformer encoder. The new encoder significantly enhances feature processing capabilities through internal and cross-scale feature interaction and fusion logic. Secondly, an IoU (Intersection over Union) aware query selection mechanism is introduced. This mechanism adds IoU constraints during the training phase to provide higher-quality initial object queries for the decoder, significantly improving the decoding performance. Additionally, the OptiDETR model integrates SW-Block into the DETR decoder, leveraging the advantages of Swin Transformer in global context modeling and feature representation to further enhance the performance and efficiency of object detection. To tackle the problem of small object detection, this study innovatively employs the SAHI algorithm for data augmentation. Through a series of experiments, It achieved a significant performance improvement of more than two percentage points in the mAP (mean Average Precision) metric compared to current mainstream object detection models. Furthermore, ther
The inherent electrocatalytic potential of transition metal phosphides(TMPs)for oxygen evolution is influenced by the reduced efficiency of electron transfer resulting from the interaction between electronegative phos...
详细信息
The inherent electrocatalytic potential of transition metal phosphides(TMPs)for oxygen evolution is influenced by the reduced efficiency of electron transfer resulting from the interaction between electronegative phosphorus atoms and transition ***,we introduce Fe into Ni_(2)P nanocrystals by thermal injection synthesis method,and anchor them on nickel foam(NF)by facile spraying to prepare self-supporting oxygen evolution reaction(OER)***,the optimized electrode of Ni_(2)P-Fe-2/NF demonstrates low overpotentials of 212 mV with 10 mA·cm^(-2)and a 0.9%decay within300 h test of 50 mA·cm^(-2).Notably,when electrode size was expanded to 600 cm^(2)and applied to a larger electrolyzer,its 9 h decay rate at 6 A current was only 1.69%.Characterization results show that Fe doped NiOOH is generated during OER reaction as actual catalyst,Results from density functional theory(DFT)computations suggest that Fe doping shifts NiOOH d-band center to Fermi level,lowering critical *OOH intermediates formation energy barrier during the OER *** findings inform the large-scale industrial application of TMPs as robust electrocatalysts.
Background: Multi-degree-of-freedom platforms are frequently employed in space docking devices, motion modeling, and robotics. Complex research is being done on multidegree-of-freedom platforms, including work on spat...
详细信息
The equiatomic TiNbZrTaHf alloy was successfully rolled at room temperature with the reduction of ~ 85%. The microstructure and tensile properties were investigated after cold working and annealing. It was determined ...
详细信息
The equiatomic TiNbZrTaHf alloy was successfully rolled at room temperature with the reduction of ~ 85%. The microstructure and tensile properties were investigated after cold working and annealing. It was determined that the recrystallization temperature of the TiNbZrTaHf alloy between 850 and 900 ℃. Complete recrystallization and normal grain growth occurred, the high stability of single phase was maintained after annealing at 1000, 1200, and 1400 ℃. But the precipitated phase appeared after long term annealing, as seen after 500 h at 1000 ℃. After cold working, the tensile strength and the elongation of TiNbZrTaHf were 1137 MPa and 25.1%, respectively. The annealed alloy has a high tensile strength (σ_(b )= 863 MPa) and ductility (ε_(e )= 28.5%). Moreover, the oxidation of TiNbZrTaHf alloy at elevated temperatures has a significant impact on its mechanical properties. The poor oxidation resistance of TiNbZrTaHf can accelerate tensile failure by inducing fractures at grain boundaries.
To mitigate the challenges posed by data uncertainty in Full-Self Driving (FSD) systems. This paper proposes a novel feature extraction learning model called Adaptive Region of Interest Optimized Pyramid Network (ARO)...
详细信息
Background: Fluid jet polishing, Airbag polishing, Magnetorheological polishing, and Ion beam polishing are all emerging polishing technologies commonly used for processing optical components, which can be used to man...
详细信息
Background: Fluid jet polishing, Airbag polishing, Magnetorheological polishing, and Ion beam polishing are all emerging polishing technologies commonly used for processing optical components, which can be used to manufacture various high-precision and high-quality optical components. Their processing mechanisms are to remove materials by high-speed jet impacting the surface of the workpiece;using a spherical flexible airbag as a polishing tool to obtain a super-smooth surface by adding polishing fluid containing fine abrasives;controlling the magnetic field to form a flexible polishing belt of Magnetorheological fluid, which undergoes relative motion to achieve material removal;using a neutral ion beam to bombard the surface of the workpiece to remove workpiece surface atoms and obtain a super-smooth surface through energy and momentum transfer between ions and workpiece atoms. The characteristics and removal mechanisms of various polishing methods are briefly described, and the advantages and key issues that need to be addressed for each polishing technology are pointed out, and suggestions and prospects for future research, application, and development are also given. Objective: In order to meet the growing demand for high-precision optical components and mass-manufactured optical components, this paper aims to study the various polishing technologies that are continuously improved and suggestions are made for future research and development directions. Method: This paper reviews the current patents related to various polishing technologies, such as Fluid jet polishing, Airbag polishing, Magnetorheological polishing and Ion beam polishing and other representative polishing technologies. Results: Various types of polishing technologies have been studied, and the main problem at the current stage is the lack of accuracy. The problem of the polishing device, such as fluid jet polishing, only considers the change of fluid velocity and pressure to construct the remova
Background: Rolling bearings are the core components of mechanical equipment. Lubrication plays an important role in the operating performance of rolling bearings. The research on rolling bearing lubrication devices i...
详细信息
Electrically assisted deformation(EAD)was adopted in this work to overcome the shortcomings such as poor formability and easy cracking in the processing of dual-phase the Al_(0.6) CoCrFeNiMn high entropy al-loy(HEA)at...
详细信息
Electrically assisted deformation(EAD)was adopted in this work to overcome the shortcomings such as poor formability and easy cracking in the processing of dual-phase the Al_(0.6) CoCrFeNiMn high entropy al-loy(HEA)at room *** of the Al_(0.6) CoCrFeNiMn HEA was studied systematically using electrically assisted uniaxial *** results showed that pulse current caused the temperature gradient along the tensile direction and the temperatures of the samples increased with the current *** flow stress decreased,and the elongation increased with increasing current density during the *** the current density was 30 A mm-2,the total elongation of the samples could be increased by 50%compared to that with no *** current can reduce local stress concentration and post-pone microcracks initiation in the body-centered cubic(BCC)phases,and hence can effectively inhibit cracks and *** dislocation tangles were opened by pulse current,and the dislocation recovery was enhanced at a high current *** with dilute solid solution alloys,the lattice distortion effect,the high fraction of the BCC phases,and the dislocations in HEAs can lead to the enhancement of the local Joule heating,which accelerated dislocation slip and dislocation *** study con-firms that EAD can effectively im prove the formability of HEAs and provides theoretical guidance and an experimental basis for forming HEAs components.
暂无评论