Mobile crowdsensing is a popular platform that takes advantage of the onboard sensors and resources on mobile nodes. The crowdsensing platform chooses to assign several sensing tasks each day, whose utility is based o...
详细信息
Mobile crowdsensing is a popular platform that takes advantage of the onboard sensors and resources on mobile nodes. The crowdsensing platform chooses to assign several sensing tasks each day, whose utility is based on the quality of harvested sensing data, the payment of transmitting data, and the recruitment of mobile nodes. An Internet serviceprovider (ISP) selects a portion of access points (APs) to power on for uploading data, whose utility depends on threeparts: the traffic income of transmitting sensing data, the energy cost of operating APs, and the energy cost of data transmissions by APs. The interaction between the crowdsensing platform and ISP is formulated as an iterated game, with social welfare defined as the sum of their expected utilities. In this paper, our objective is to unilaterally control social welfare without considering the opponent’s strategy, with the aim of achieving stable and maximized social welfare. Toachieve this goal, we leverage the concept of a zero-determinant strategy in the game theory. We introduce a zero-determinant strategy for the vehicular crowdsensing platform (ZD-VCS) and analyze it in discrete and continuous models in thevehicular crowdsensing scenario. Furthermore, we analyze an extortion strategy between the platform and ISP. Experimental results demonstrate that the ZD-VCS strategy enables unilateral control of social welfare, leading to a high andstable value.
Thyroid nodules,a common disorder in the endocrine system,require accurate segmentation in ultrasound images for effective diagnosis and ***,achieving precise segmentation remains a challenge due to various factors,in...
详细信息
Thyroid nodules,a common disorder in the endocrine system,require accurate segmentation in ultrasound images for effective diagnosis and ***,achieving precise segmentation remains a challenge due to various factors,including scattering noise,low contrast,and limited resolution in ultrasound *** existing segmentation models have made progress,they still suffer from several limitations,such as high error rates,low generalizability,overfitting,limited feature learning capability,*** address these challenges,this paper proposes a Multi-level Relation Transformer-based U-Net(MLRT-UNet)to improve thyroid nodule *** MLRTUNet leverages a novel Relation Transformer,which processes images at multiple scales,overcoming the limitations of traditional encoding *** transformer integrates both local and global features effectively through selfattention and cross-attention units,capturing intricate relationships within the *** approach also introduces a Co-operative Transformer Fusion(CTF)module to combine multi-scale features from different encoding layers,enhancing the model’s ability to capture complex patterns in the ***,the Relation Transformer block enhances long-distance dependencies during the decoding process,improving segmentation *** results showthat the MLRT-UNet achieves high segmentation accuracy,reaching 98.2% on the Digital Database Thyroid Image(DDT)dataset,97.8% on the Thyroid Nodule 3493(TG3K)dataset,and 98.2% on the Thyroid Nodule3K(TN3K)*** findings demonstrate that the proposed method significantly enhances the accuracy of thyroid nodule segmentation,addressing the limitations of existing models.
Advancements in Natural Language Processing and Deep Learning techniques have significantly pro-pelled the automation of Legal Judgment Prediction,achieving remarkable progress in legal *** of the existing research wo...
详细信息
Advancements in Natural Language Processing and Deep Learning techniques have significantly pro-pelled the automation of Legal Judgment Prediction,achieving remarkable progress in legal *** of the existing research works on Legal Judgment Prediction(LJP)use traditional optimization algorithms in deep learning techniques falling into local *** research article focuses on using the modified Pelican Optimization method which mimics the collective behavior of Pelicans in the exploration and exploitation phase during cooperative food ***,the selection of search agents within a boundary is done randomly,which increases the time required to achieve global *** address this,the proposed Chaotic Opposition Learning-based Pelican Optimization(COLPO)method incorporates the concept of Opposition-Based Learning combined with a chaotic cubic function,enabling deterministic selection of random numbers and reducing the number of iterations needed to reach global ***,the LJP approach in this work uses improved semantic similarity and entropy features to train a hybrid classifier combining Bi-GRU and Deep *** output scores are fused using improved score level fusion to boost prediction *** proposed COLPO method experiments with real-time Madras High Court criminal cases(Dataset 1)and the Supreme Court of India database(Dataset 2),and its performance is compared with nature-inspired algorithms such as Sparrow Search Algorithm(SSA),COOT,Spider Monkey Optimization(SMO),Pelican Optimization Algorithm(POA),as well as baseline classifier models and transformer neural *** results show that the proposed hybrid classifier with COLPO outperforms other cutting-edge LJP algorithms achieving 93.4%and 94.24%accuracy,respectively.
In this paper,a robust and consistent COVID-19 emergency decision-making approach is proposed based on q-rung linear diophantine fuzzy set(q-RLDFS),differential evolutionary(DE)optimization principles,and evidential r...
详细信息
In this paper,a robust and consistent COVID-19 emergency decision-making approach is proposed based on q-rung linear diophantine fuzzy set(q-RLDFS),differential evolutionary(DE)optimization principles,and evidential reasoning(ER)*** proposed approach uses q-RLDFS in order to represent the evaluating values of the alternatives corresponding to the *** optimization is used to obtain the optimal weights of the attributes,and ER methodology is used to compute the aggregated q-rung linear diophantine fuzzy values(q-RLDFVs)of each *** the score values of alternatives are computed based on the aggregated *** alternative with the maximum score value is selected as a better *** applicability of the proposed approach has been illustrated in COVID-19 emergency decision-making system and sustainable energy planning ***,we have validated the proposed approach with a numerical ***,a comparative study is provided with the existing models,where the proposed approach is found to be robust to perform better and consistent in uncertain environments.
Emotion recognition is crucial in human-computer interaction and psychological research, utilizing modalities such as facial expressions, voice intonations, and EEG signals. This research investigates AI-driven techni...
详细信息
A complete examination of Large Language Models’strengths,problems,and applications is needed due to their rising use across *** studies frequently focus on single-use situations and lack a comprehensive understandin...
详细信息
A complete examination of Large Language Models’strengths,problems,and applications is needed due to their rising use across *** studies frequently focus on single-use situations and lack a comprehensive understanding of LLM architectural performance,strengths,and *** gap precludes finding the appropriate models for task-specific applications and limits awareness of emerging LLM optimization and deployment *** this research,50 studies on 25+LLMs,including GPT-3,GPT-4,Claude 3.5,DeepKet,and hybrid multimodal frameworks like ContextDET and GeoRSCLIP,are thoroughly *** propose LLM application taxonomy by grouping techniques by task focus—healthcare,chemistry,sentiment analysis,agent-based simulations,and multimodal *** methods like parameter-efficient tuning(LoRA),quantumenhanced embeddings(DeepKet),retrieval-augmented generation(RAG),and safety-focused models(GalaxyGPT)are evaluated for dataset requirements,computational efficiency,and performance *** for ethical issues,data limited hallucinations,and KDGI-enhanced fine-tuning like Woodpecker’s post-remedy corrections are *** investigation’s scope,mad,and methods are described,but the primary results are *** work reveals that domain-specialized fine-tuned LLMs employing RAG and quantum-enhanced embeddings performbetter for context-heavy *** medical text normalization,ChatGPT-4 outperforms previous models,while two multimodal frameworks,GeoRSCLIP,increase remote ***-efficient tuning technologies like LoRA have minimal computing cost and similar performance,demonstrating the necessity for adaptive models in multiple *** discover the optimum domain-specific models,explain domain-specific fine-tuning,and present quantum andmultimodal LLMs to address scalability and cross-domain *** framework helps academics and practitioners identify,adapt,and innovate LLMs for different *** work
Although lots of research has been done in recognizing facial expressions,there is still a need to increase the accuracy of facial expression recognition,particularly under uncontrolled *** use of Local Directional Pa...
详细信息
Although lots of research has been done in recognizing facial expressions,there is still a need to increase the accuracy of facial expression recognition,particularly under uncontrolled *** use of Local Directional Patterns(LDP),which has good characteristics for emotion detection has yielded encouraging *** innova-tive end-to-end learnable High Response-based Local Directional Pattern(HR-LDP)network for facial emotion recognition is implemented by employing fixed convolutional filters in the proposed *** combining learnable convolutional layers with fixed-parameter HR-LDP layers made up of eight Kirsch filters and derivable simulated gate functions,this network considerably minimizes the number of network *** cost of the parameters in our fully linked layers is up to 64 times lesser than those in currently used deep learning-based detection *** seven well-known databases,including JAFFE,CK+,MMI,SFEW,OULU-CASIA and MUG,the recognition rates for seven-class facial expression recognition are 99.36%,99.2%,97.8%,60.4%,91.1%and 90.1%,*** results demonstrate the advantage of the proposed work over cutting-edge techniques.
In recent days the usage of android smartphones has increased exten-sively by *** are several applications in different categories bank-ing/finance,social engineering,education,sports andfitness,and many more *** androi...
详细信息
In recent days the usage of android smartphones has increased exten-sively by *** are several applications in different categories bank-ing/finance,social engineering,education,sports andfitness,and many more *** android stack is more vulnerable compared to other mobile plat-forms like IOS,Windows,or Blackberry because of the open-source *** the Existing system,malware is written using vulnerable system calls to bypass signature detection important drawback is might not work with zero-day exploits and stealth *** attackers target the victim with various attacks like adware,backdoor,spyware,ransomware,and zero-day exploits and create threat hunts on the day-to-day *** the existing approach,there are various tradi-tional machine learning classifiers for building a decision support system with limitations such as low detection rate and less feature *** important contents taken for building model from android applications like Intent Filter,Per-mission Signature,API Calls,and System commands are taken from the manifestfi*** function parameters of various machine and deep learning classifiers like Nave Bayes,k-Nearest Neighbors(k-NN),Support Vector Machine(SVM),Ada Boost,and Multi-Layer Perceptron(MLP)are done for effective *** our pro-posed work,we have used an unsupervised learning multilayer perceptron with multiple target labels and built a model with a better accuracy rate compared to logistic regression,and rank the best features for detection of applications and clas-sify as malicious or benign can be used as threat model by online antivirus scanners.
Predicting the metastatic direction of primary breast cancer (BC), thus assisting physicians in precise treatment, strict follow-up, and effectively improving the prognosis. The clinical data of 293,946 patients with ...
详细信息
A novel quantum search algorithm tailored for continuous optimization and spectral problems was proposed recently by a research team from the University of Electronic science and technology of China to broaden quantum...
详细信息
A novel quantum search algorithm tailored for continuous optimization and spectral problems was proposed recently by a research team from the University of Electronic science and technology of China to broaden quantum computation frontiers and enrich its application *** computing has traditionally excelled at tackling discrete search challenges,but many important applications from large-scale optimization to advanced physics simulations necessitate searching through continuous *** continuous search problems involve uncountably infinite solution spaces and bring about computational complexities far beyond those faced in conventional discrete *** draft,titled“Fixed-Point Quantum Continuous Search Algorithm with Optimal Query Complexity”,takes on the core challenge of performing search tasks in domains that may be uncountably infinite,offering theoretical and practical insights into achieving quantum speedups in such settings[1].
暂无评论