咨询与建议

限定检索结果

文献类型

  • 1,906 篇 会议
  • 897 篇 期刊文献
  • 8 册 图书

馆藏范围

  • 2,811 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 1,592 篇 工学
    • 1,245 篇 计算机科学与技术...
    • 1,062 篇 软件工程
    • 355 篇 信息与通信工程
    • 325 篇 控制科学与工程
    • 234 篇 生物工程
    • 189 篇 电气工程
    • 187 篇 生物医学工程(可授...
    • 149 篇 光学工程
    • 109 篇 电子科学与技术(可...
    • 98 篇 网络空间安全
    • 95 篇 安全科学与工程
    • 94 篇 机械工程
    • 82 篇 交通运输工程
    • 81 篇 化学工程与技术
    • 70 篇 仪器科学与技术
    • 61 篇 动力工程及工程热...
  • 903 篇 理学
    • 472 篇 数学
    • 271 篇 生物学
    • 224 篇 物理学
    • 196 篇 统计学(可授理学、...
    • 108 篇 化学
    • 79 篇 系统科学
  • 499 篇 管理学
    • 302 篇 管理科学与工程(可...
    • 225 篇 图书情报与档案管...
    • 141 篇 工商管理
  • 198 篇 医学
    • 153 篇 临床医学
    • 147 篇 基础医学(可授医学...
    • 117 篇 公共卫生与预防医...
    • 82 篇 药学(可授医学、理...
  • 77 篇 法学
    • 67 篇 社会学
  • 60 篇 经济学
  • 58 篇 农学
  • 34 篇 教育学
  • 16 篇 文学
  • 3 篇 哲学
  • 2 篇 历史学
  • 2 篇 艺术学
  • 1 篇 军事学

主题

  • 248 篇 accuracy
  • 177 篇 deep learning
  • 139 篇 machine learning
  • 133 篇 real-time system...
  • 133 篇 training
  • 106 篇 convolutional ne...
  • 103 篇 feature extracti...
  • 93 篇 predictive model...
  • 86 篇 computational mo...
  • 76 篇 support vector m...
  • 70 篇 medical services
  • 68 篇 machine learning...
  • 66 篇 data models
  • 60 篇 optimization
  • 58 篇 internet of thin...
  • 56 篇 semantics
  • 56 篇 artificial intel...
  • 53 篇 reliability
  • 46 篇 image segmentati...
  • 42 篇 reinforcement le...

机构

  • 49 篇 college of compu...
  • 40 篇 lamarr institute...
  • 39 篇 nitte meenakshi ...
  • 37 篇 department of ar...
  • 34 篇 school of comput...
  • 28 篇 division of arti...
  • 27 篇 lovely professio...
  • 27 篇 engineering rese...
  • 24 篇 department of ar...
  • 24 篇 department of co...
  • 23 篇 key lab. of mach...
  • 22 篇 center for machi...
  • 22 篇 school of comput...
  • 20 篇 key laboratory o...
  • 20 篇 machine learning...
  • 20 篇 school of artifi...
  • 20 篇 hubei provincial...
  • 19 篇 the lamarr insti...
  • 19 篇 east west instit...
  • 19 篇 department of co...

作者

  • 39 篇 piyush kumar par...
  • 38 篇 pareek piyush ku...
  • 38 篇 mohsen guizani
  • 36 篇 prateek verma
  • 31 篇 lv jiancheng
  • 27 篇 guizani mohsen
  • 26 篇 stachniss cyrill
  • 24 篇 behnke sven
  • 23 篇 müller klaus-rob...
  • 22 篇 li zengyang
  • 21 篇 wang liwei
  • 20 篇 liang peng
  • 20 篇 zhang kun
  • 20 篇 verma prateek
  • 18 篇 von lilienfeld o...
  • 18 篇 behley jens
  • 17 篇 liu yang
  • 17 篇 samek wojciech
  • 17 篇 cyrill stachniss
  • 16 篇 kersting kristia...

语言

  • 1,758 篇 英文
  • 1,049 篇 其他
  • 12 篇 中文
  • 1 篇 德文
  • 1 篇 斯洛文尼亚文
检索条件"机构=Computer Science with Artificial Intelligence and Machine Learning"
2811 条 记 录,以下是2561-2570 订阅
排序:
machine learning of thermodynamic observables in the presence of mode collapse
arXiv
收藏 引用
arXiv 2021年
作者: Nicoli, Kim Andrea Anders, Christopher Funcke, Lena Hartung, Tobias Jansen, Karl Kessel, Pan Nakajima, Shinichi Stornati, Paolo Technische Universität Berlin Machine Learning Group Marchstrasse 23 Berlin10587 Germany Technische Universität Berlin Berlin Germany Center for Theoretical Physics Co-Design Center for Quantum Advantage NSF AI Institute for Artificial Intelligence and Fundamental Interactions Massachusetts Institute of Technology 77 Massachusetts Avenue CambridgeMA02139 United States Perimeter Institute for Theoretical Physics 31 Caroline Street North WaterlooONN2L 2Y5 Canada Computation-Based Science and Technology Research Center The Cyprus Institute 20 Kavafi Street Nicosia2121 Cyprus Department of Mathematical Sciences University of Bath Bath United Kingdom Deutsches Elektronen-Synchrotron DESY Platanenallee 6 Zeuthen15738 Germany RIKEN Center for AIP 1-4-1 Nihonbashi Chuo-ku Tokyo Japan ICFO The Barcelona Institute of Science and Technology Av. Carl Friedrich Gauss 3 Barcelona08860 Spain
Estimating the free energy, as well as other thermodynamic observables, is a key task in lattice field theories. Recently, it has been pointed out that deep generative models can be used in this context [1]. Crucially... 详细信息
来源: 评论
Field-level simulation-based inference of galaxy clustering with convolutional neural networks
收藏 引用
Physical Review D 2024年 第8期109卷 083536-083536页
作者: Pablo Lemos Liam Parker ChangHoon Hahn Shirley Ho Michael Eickenberg Jiamin Hou Elena Massara Chirag Modi Azadeh Moradinezhad Dizgah Bruno Régaldo-Saint Blancard David Spergel Department of Physics Université de Montréal Montréal 1375 Avenue Thérèse-Lavoie-Roux Montréal QC H2V 0B3 Canada Mila—Quebec Artificial Intelligence Institute Montréal 6666 Rue Saint-Urbain Montréal QC H2S 3H1 Canada Ciela—Montreal Institute for Astrophysical Data Analysis and Machine Learning Montréal Canada Center for Computational Astrophysics Flatiron Institute 162 5th Avenue New York New York 10010 USA Department of Physics Princeton University Princeton New Jersey 08544 USA Center for Cosmology and Particle Physics Department of Physics New York University New York New York 10003 USA Department of Physics Carnegie Mellon University Pittsburgh Pennsylvania 15213 USA Center for Computational Mathematics Flatiron Institute 162 5th Avenue New York New York 10010 USA Department of Astronomy University of Florida 211 Bryant Space Science Center Gainesville Florida 32611 USA Max-Planck-Institut für Extraterrestrische Physik Postfach 1312 Giessenbachstrasse 1 85748 Garching bei München Germany Waterloo Centre for Astrophysics University of Waterloo 200 University Avenue W. Waterloo Ontario N2L 3G1 Canada Department of Physics and Astronomy University of Waterloo 200 University Avenue W. Waterloo Ontario N2L 3G1 Canada Département de Physique Théorique Université de Genève 24 quai Ernest Ansermet 1211 Genève 4 Switzerland
We present the first simulation-based inference (SBI) of cosmological parameters from field-level analysis of galaxy clustering. Standard galaxy clustering analyses rely on analyzing summary statistics, such as the po... 详细信息
来源: 评论
Scaling provable adversarial defenses
arXiv
收藏 引用
arXiv 2018年
作者: Wong, Eric Metzen, Jan Hendrik Schmidt, Frank R. Zico Kolter, J. Machine Learning Department Carnegie Mellon University PittsburghPA15213 United States Bosch Center for Artificial Intelligence Renningen Germany Computer Science Department Carnegie Mellon University Bosch Center for Artificial Intelligence PittsburghPA15213 United States
Recent work has developed methods for learning deep network classifiers that are provably robust to norm-bounded adversarial perturbation;however, these methods are currently only possible for relatively small feedfor... 详细信息
来源: 评论
A Novel Approach for Detection of Counterfeit Indian Currency Notes Using Deep Convolutional Neural Network
收藏 引用
IOP Conference Series: Materials science and Engineering 2020年 第2期981卷
作者: S Naresh Kumar Gaurav Singal Shwetha Sirikonda R. Nethravathi Department of Computer Science and Engineering SR Engineering College Warangal Telangana India Member Center for Artificial Intelligence and Deep Learning SR University Warangal Telangana India Department of Computer Science and Engineering Bennett University Greater Noida India Department of Computer Science and Engineering Sumathi Reddy Institute of Technology for Women Ananthasagar Hasanparthy Warangal India
In recent years, the Indian economy has shown rapid growth among all other major economies. India has been tragically reviled with issues like corruption and black currency, fake money notes is additionally major issu...
来源: 评论
Author Correction: APOE4 impairs myelination via cholesterol dysregulation in oligodendrocytes
收藏 引用
Nature 2024年 第8043期636卷 E9页
作者: Joel W Blanchard Leyla Anne Akay Jose Davila-Velderrain Djuna von Maydell Hansruedi Mathys Shawn M Davidson Audrey Effenberger Chih-Yu Chen Kristal Maner-Smith Ihab Hajjar Eric A Ortlund Michael Bula Emre Agbas Ayesha Ng Xueqiao Jiang Martin Kahn Cristina Blanco-Duque Nicolas Lavoie Liwang Liu Ricardo Reyes Yuan-Ta Lin Tak Ko Lea R'Bibo William T Ralvenius David A Bennett Hugh P Cam Manolis Kellis Li-Huei Tsai Picower Institute for Learning and Memory Massachusetts Institute of Technology Cambridge MA USA. Department of Brain and Cognitive Sciences Massachusetts Institute of Technology Cambridge MA USA. Nash Family Department of Neuroscience Black Family Stem Cell Institute Ronald M. Loeb Center for Alzheimer's Disease Friedman Brain Institute Icahn School of Medicine at Mt Sinai New York NY USA. MIT Computer Science and Artificial Intelligence Laboratory Cambridge MA USA. Human Technopole Milan Italy. Department of Neurobiology University of Pittsburgh Pittsburgh PA USA. Lewis-Sigler Institute for Integrative Genomics Princeton University Princeton NJ USA. Department of Medicine Emory Integrated Metabolomics and Lipidomics Core Emory University School of Medicine Atlanta GA USA. Department of Neurology Emory University School of Medicine Atlanta GA USA. Department of Biochemistry Emory University School of Medicine Atlanta GA USA. Rush Alzheimer's Disease Center Rush University Medical Center Chicago IL USA. MIT Computer Science and Artificial Intelligence Laboratory Cambridge MA USA. manoli@mit.edu. Broad Institute of Harvard and MIT Cambridge MA USA. manoli@mit.edu. Picower Institute for Learning and Memory Massachusetts Institute of Technology Cambridge MA USA. lhtsai@mit.edu. Department of Brain and Cognitive Sciences Massachusetts Institute of Technology Cambridge MA USA. lhtsai@mit.edu. Broad Institute of Harvard and MIT Cambridge MA USA. lhtsai@mit.edu.
来源: 评论
The Bottleneck Simulator: A model-based deep reinforcement learning approach
arXiv
收藏 引用
arXiv 2018年
作者: Serban, Iulian Vlad Sankar, Chinnadhurai Pieper, Michael Pineau, Joelle Bengio, Yoshua Montreal Institute for Learning Algorithms Montreal Canada School of Computer Science McGill University Montreal and Facebook Artificial Intelligence Research
Deep reinforcement learning has recently shown many impressive successes. However, one major obstacle towards applying such methods to realworld problems is their lack of data-efficiency. To this end, we propose the B... 详细信息
来源: 评论
Topological Unwinding in an Exciton-Polariton Condensate Array
arXiv
收藏 引用
arXiv 2023年
作者: Lyu, Guitao Minami, Yuki Kim, Na Young Byrnes, Tim Watanabe, Gentaro School of Physics Zhejiang Institute of Modern Physics Zhejiang University Zhejiang Hangzhou310027 China Division of Natural and Applied Sciences Duke Kunshan University Jiangsu Kunshan215300 China Faculty of Engineering Gifu University 1-1 Yanagido Gifu501-1193 Japan Institute for Quantum Computing University of Waterloo 200 University Ave. West WaterlooONN2L 3G1 Canada Department of Electrical and Computer Engineering University of Waterloo 200 University Ave. West WaterlooONN2L 3G1 Canada Waterloo Institute for Nanotechnology University of Waterloo 200 University Ave. West WaterlooONN2L 3G1 Canada New York University Shanghai NYU-ECNU Institute of Physics at NYU Shanghai Shanghai Frontiers Science Center of Artificial Intelligence and Deep Learning 567 West Yangsi Road Shanghai200126 China State Key Laboratory of Precision Spectroscopy School of Physical and Material Sciences East China Normal University Shanghai200062 China NYUAD Research Institute New York University Abu Dhabi United Arab Emirates Department of Physics New York University New YorkNY10003 United States Zhejiang Province Key Laboratory of Quantum Technology and Device Zhejiang University Zhejiang Hangzhou310027 China
The phase distribution in a Bose-Einstein condensate can realize various topological states classified by distinct winding numbers. While states with different winding numbers are topologically protected in the linear... 详细信息
来源: 评论
Revisiting distillation and incremental classifier learning
arXiv
收藏 引用
arXiv 2018年
作者: Javed, Khurram Shafait, Faisal Deep Learning Laboratory National Center of Artificial Intelligence Islamabad Pakistan School of Electrical Engineering and Computer Science National University of Sciences and Technology
One of the key differences between the learning mechanism of humans and artificial Neural Networks (ANNs) is the ability of humans to learn one task at a time. ANNs, on the other hand, can only learn multiple tasks si... 详细信息
来源: 评论
Evaluating the Accuracy and Reliability of Real-World Digital Mobility Outcomes in Older Adults After Hip Fracture: Cross-Sectional Observational Study
收藏 引用
JMIR Formative Research 2025年 9卷 e67792页
作者: Berge, Martin A. Paraschiv-Ionescu, Anisoara Kirk, Cameron Küderle, Arne Micó-Amigo, Encarna Becker, Clemens Cereatti, Andrea Del Din, Silvia Engdal, Monika Garcia-Aymerich, Judith Grønvik, Karoline B. Hansen, Clint Hausdorff, Jeffrey M. Helbostad, Jorunn L. Jansen, Carl-Philipp Johnsen, Lars Gunnar Klenk, Jochen Koch, Sarah Maetzler, Walter Megaritis, Dimitrios Müller, Arne Rochester, Lynn Schwickert, Lars Taraldsen, Kristin Vereijken, Beatrix Department of Neuromedicine and Movement Science Norwegian University of Science and Technology Trondheim Norway Laboratory of Movement Analysis and Measurement Ecole Polytechnique Federale de Lausanne Lausanne Switzerland Translational and Clinical Research Institute Faculty of Medical Sciences Newcastle University Newcastle Upon Tyne United Kingdom Machine Learning and Data Analytics Lab Department Artificial Intelligence in Biomedical Engineering Friedrich-Alexander-Universität Erlangen-Nürnberg Erlangen Germany Geriatric Center Medical Faculty Heidelberg Heidelberg University Heidelberg Germany Department of Geriatrics and Rehabilitation Robert Bosch Hospital Stuttgart Germany Department of Electronics and Telecommunications Politecnico di Torino Turin Italy National Institute for Health and Care Research Newcastle Biomedical Research Centre Newcastle University The Newcastle Upon Tyne Hospitals NHS Foundation Trust Newcastle Upon Tyne United Kingdom Barcelona Institute for Global Health Barcelona Spain Department of Medicine and Life Sciences Universitat Pompeu Fabra Catalonia Barcelona Spain CIBER Epidemiología y Salud Pública Madrid Spain Department of Neurology University Hospital Schleswig-Holstein Kiel University Kiel Germany Center for the Study of Movement Cognition and Mobility Neurological Institute Tel Aviv Medical Center Tel Aviv Israel Department of Physical Therapy Faculty of Medical & Health Sciences Tel Aviv University Tel Aviv Israel Sagol School of Neuroscience Tel Aviv University Tel Aviv Israel Rush Alzheimer’s Disease Center Rush University Medical Center Chicago IL United States Department of Orthopedic Surgery Rush Medical College Rush University Chicago IL United States Department of Orthopaedic Surgery St. Olav’s Hospital Trondheim Norway Institute of Epidemiology and Medical Biometry Ulm University Ulm Germany IB University of Health and Social Sciences Study Centre Stuttgart Stuttgart Germany Department of Sport
Background: Algorithms estimating real-world digital mobility outcomes (DMOs) are increasingly validated in healthy adults and various disease cohorts. However, their accuracy and reliability in older adults after hip... 详细信息
来源: 评论
Predicting the clinical impact of human mutation with deep neural networks (vol 50, pg 1161, 2018)
收藏 引用
NATURE GENETICS 2019年 第2期51卷 364-364页
作者: Sundaram, Laksshman Gao, Hong Padigepati, Samskruthi Reddy McRae, Jeremy F. Li, Yanjun Kosmicki, Jack A. Fritzilas, Nondas Hakenberg, Jorg Dutta, Anindita Shon, John Xu, Jinbo Batzoglou, Serafim Li, Xiaolin Farh, Kyle Kai-How Illumina Artificial Intelligence Laboratory Illumina Inc San Diego USA Department of Computer Science Stanford University Stanford USA National Science Foundation Center for Big Learning University of Florida Gainesville USA Analytic and Translational Genetics Unit (ATGU) Department of Medicine Massachusetts General Hospital and Harvard Medical School Boston USA Toyota Technological Institute at Chicago Chicago USA
In the version of this article originally published, the name of author Serafim Batzoglou was misspelled. The error has been corrected in the HTML and PDF versions of the article.
来源: 评论