One of the leading causes of early health detriment is the increasing levels of air pollution in major cities and eventually in indoor spaces. Monitoring the air quality effectively in closed spaces like educational i...
详细信息
With the vigorous development of cloud computing, most organizations have shifted their data and applications to the cloud environment for storage, computation, and sharing purposes. During storage and data sharing ac...
详细信息
With the vigorous development of cloud computing, most organizations have shifted their data and applications to the cloud environment for storage, computation, and sharing purposes. During storage and data sharing across the participating entities, a malicious agent may gain access to outsourced data from the cloud environment. A malicious agent is an entity that deliberately breaches the data. This information accessed might be misused or revealed to unauthorized parties. Therefore, data protection and prediction of malicious agents have become a demanding task that needs to be addressed appropriately. To deal with this crucial and challenging issue, this paper presents a Malicious Agent Identification-based Data Security (MAIDS) Model which utilizes XGBoost machine learning classification algorithm for securing data allocation and communication among different participating entities in the cloud system. The proposed model explores and computes intended multiple security parameters associated with online data communication or transactions. Correspondingly, a security-focused knowledge database is produced for developing the XGBoost Classifier-based Malicious Agent Prediction (XC-MAP) unit. Unlike the existing approaches, which only identify malicious agents after data leaks, MAIDS proactively identifies malicious agents by examining their eligibility for respective data access. In this way, the model provides a comprehensive solution to safeguard crucial data from both intentional and non-intentional breaches, by granting data to authorized agents only by evaluating the agent’s behavior and predicting the malicious agent before granting data. The performance of the proposed model is thoroughly evaluated by accomplishing extensive experiments, and the results signify that the MAIDS model predicts the malicious agents with high accuracy, precision, recall, and F1-scores up to 95.55%, 95.30%, 95.50%, and 95.20%, respectively. This enormously enhances the system’s sec
Forecasting electricity demand is an essential part of the smart grid to ensure a stable and reliable power grid. With the increasing integration of renewable energy resources into the grid, forecasting the demand for...
详细信息
Forecasting electricity demand is an essential part of the smart grid to ensure a stable and reliable power grid. With the increasing integration of renewable energy resources into the grid, forecasting the demand for electricity is critical at all levels, from the distribution to the household. Most existing forecasting methods, however, can be considered black-box models as a result of deep digitalization enablers, such as deep neural networks, which remain difficult to interpret by humans. Moreover, capture of the inter-dependencies among variables presents a significant challenge for multivariate time series forecasting. In this paper we propose eXplainable Causal Graph Neural Network (X-CGNN) for multivariate electricity demand forecasting that overcomes these limitations. As part of this method, we have intrinsic and global explanations based on causal inferences as well as local explanations based on post-hoc analyses. We have performed extensive validation on two real-world electricity demand datasets from both the household and distribution levels to demonstrate that our proposed method achieves state-of-the-art performance.
The ease and high availability of public and personal data in the existing automated and digital environments have made our technological systems vulnerable to security threats. The conventional approach of passwords ...
详细信息
Though belief propagation bit-flip(BPBF)decoding improves the error correction performance of polar codes,it uses the exhaustive flips method to achieve the error correction performance of CA-SCL decoding,thus resulti...
详细信息
Though belief propagation bit-flip(BPBF)decoding improves the error correction performance of polar codes,it uses the exhaustive flips method to achieve the error correction performance of CA-SCL decoding,thus resulting in high decoding complexity and *** alleviate this issue,we incorporate the LDPC-CRC-Polar coding scheme with BPBF and propose an improved belief propagation decoder for LDPC-CRC-Polar codes with bit-freezing(LDPCCRC-Polar codes BPBFz).The proposed LDPCCRC-Polar codes BPBFz employs the LDPC code to ensure the reliability of the flipping set,i.e.,critical set(CS),and dynamically update *** modified CS is further utilized for the identification of error-prone *** proposed LDPC-CRC-Polar codes BPBFz obtains remarkable error correction performance and is comparable to that of the CA-SCL(L=16)decoder under medium-to-high signal-to-noise ratio(SNR)*** gains up to 1.2dB and 0.9dB at a fixed BLER=10-4compared with BP and BPBF(CS-1),*** addition,the proposed LDPC-CRC-Polar codes BPBFz has lower decoding latency compared with CA-SCL and BPBF,i.e.,it is 15 times faster than CA-SCL(L=16)at high SNR regions.
Recent advancements in computer vision and deep learning have led to the widespread adoption of driver assistance systems (ADAS), which play a crucial role in detecting critical situations to ensure driving safety and...
详细信息
The Internet of Vehicles(IoV)is a networking paradigm related to the intercommunication of vehicles using a *** a dynamic network,one of the key challenges in IoV is traffic management under increasing vehicles to avo...
详细信息
The Internet of Vehicles(IoV)is a networking paradigm related to the intercommunication of vehicles using a *** a dynamic network,one of the key challenges in IoV is traffic management under increasing vehicles to avoid ***,optimal path selection to route traffic between the origin and destination is *** research proposed a realistic strategy to reduce traffic management service response time by enabling real-time content distribution in IoV systems using heterogeneous network ***,this work proposed a novel use of the Ant Colony Optimization(ACO)algorithm and formulated the path planning optimization problem as an Integer Linear Program(ILP).This integrates the future estimation metric to predict the future arrivals of the vehicles,searching the optimal *** the mobile nature of IOV,fuzzy logic is used for congestion level estimation along with the ACO to determine the optimal *** model results indicate that the suggested scheme outperforms the existing state-of-the-art methods by identifying the shortest and most cost-effective ***,this work strongly supports its use in applications having stringent Quality of Service(QoS)requirements for the vehicles.
Software-defined networking(SDN)represents a paradigm shift in network traffic *** distinguishes between the data and control *** are then used to communicate between these *** controller is central to the management ...
详细信息
Software-defined networking(SDN)represents a paradigm shift in network traffic *** distinguishes between the data and control *** are then used to communicate between these *** controller is central to the management of an SDN network and is subject to security *** research shows how a deep learning algorithm can detect intrusions in SDN-based IoT ***,low accuracy,and efficient feature selection is all *** propose a hybrid machine learning-based approach based on Random Forest and Long Short-Term Memory(LSTM).In this study,a new dataset based specifically on Software Defined Networks is used in *** obtain the best and most relevant features,a feature selection technique is *** experiments have revealed that the proposed solution is a superior method for detecting flow-based *** performance of our proposed model is also measured in terms of accuracy,recall,and precision.F1 rating and detection time Furthermore,a lightweight model for training is proposed,which selects fewer features while maintaining the model’s *** show that the adopted methodology outperforms existing models.
An imbalanced dataset often challenges machine learning, particularly classification methods. Underrepresented minority classes can result in biased and inaccurate models. The Synthetic Minority Over-Sampling Techniqu...
详细信息
An imbalanced dataset often challenges machine learning, particularly classification methods. Underrepresented minority classes can result in biased and inaccurate models. The Synthetic Minority Over-Sampling Technique (SMOTE) was developed to address the problem of imbalanced data. Over time, several weaknesses of the SMOTE method have been identified in generating synthetic minority class data, such as overlapping, noise, and small disjuncts. However, these studies generally focus on only one of SMOTE’s weaknesses: noise or overlapping. Therefore, this study addresses both issues simultaneously by tackling noise and overlapping in SMOTE-generated data. This study proposes a combined approach of filtering, clustering, and distance modification to reduce noise and overlapping produced by SMOTE. Filtering removes minority class data (noise) located in majority class regions, with the k-nn method applied for filtering. The use of Noise Reduction (NR), which removes data that is considered noise before applying SMOTE, has a positive impact in overcoming data imbalance. Clustering establishes decision boundaries by partitioning data into clusters, allowing SMOTE with modified distance metrics to generate minority class data within each cluster. This SMOTE clustering and distance modification approach aims to minimize overlap in synthetic minority data that could introduce noise. The proposed method is called “NR-Clustering SMOTE,” which has several stages in balancing data: (1) filtering by removing minority classes close to majority classes (data noise) using the k-nn method;(2) clustering data using K-means aims to establish decision boundaries by partitioning data into several clusters;(3) applying SMOTE oversampling with Manhattan distance within each cluster. Test results indicate that the proposed NR-Clustering SMOTE method achieves the best performance across all evaluation metrics for classification methods such as Random Forest, SVM, and Naїve Bayes, compared t
In late 2019, COVID-19 virus emerged as a dangerous disease that led to millions of fatalities and changed how human beings interact with each other and forced people to wear masks with mandatory lockdown. The ability...
详细信息
暂无评论