Detecting dangerous driving behavior is a critical research area focused on identifying and preventing actions that could lead to traffic accidents, such as smoking, drinking, yawning, and drowsiness, through technica...
详细信息
Image captioning is an interdisciplinary research hotspot at the intersection of computer vision and natural language processing, representing a multimodal task that integrates core technologies from both fields. This...
详细信息
Though obstruction-free progress property is weaker than other non-blocking properties including lock-freedom and wait-freedom,it has advantages that have led to the use of obstruction-free implementations for softwar...
详细信息
Though obstruction-free progress property is weaker than other non-blocking properties including lock-freedom and wait-freedom,it has advantages that have led to the use of obstruction-free implementations for software transactional memory(STM)and in anonymous and fault-tolerant distributed ***,existing work can only verify obstruction-freedom of specific data structures(e.g.,STM and list-based algorithms).In this paper,to fill this gap,we propose a program logic that can formally verify obstruction-freedom of practical implementations,as well as verify linearizability,a safety property,at the same *** also propose informal principles to extend a logic for verifying linearizability to verifying *** this approach,the existing proof for linearizability can be reused directly to construct the proof for both linearizability and ***,we have successfully applied our logic to verifying a practical obstruction-free double-ended queue implementation in the first classic paper that has proposed the definition of obstruction-freedom.
With the development of artificial intelligence, deep learning has been increasingly used to achieve automatic detection of geographic information, replacing manual interpretation and improving efficiency. However, re...
详细信息
End-to-end training has emerged as a prominent trend in speech recognition, with Conformer models effectively integrating Transformer and CNN architectures. However, their complexity and high computational cost pose d...
详细信息
Caching is one of the most important techniques for the popular distributed big data processing framework Spark. For this big data parallel computing framework, which is designed to support various applications based ...
详细信息
Caching is one of the most important techniques for the popular distributed big data processing framework Spark. For this big data parallel computing framework, which is designed to support various applications based on in-memory computing, it is not possible to cache every intermediate result due to the memory size limitation. The arbitrariness of cache application programming interface(API) usage,the diversity of application characteristics, and the variability of memory resources constitute challenges to achieving high system execution performance. Inefficient cache replacement strategies may cause different performance problems such as long application execution time, low memory utilization, high replacement frequency, and even program execution failure resulting from out of memory. The cache replacement strategy currently adopted by Spark is the least recently used(LRU) strategy. Although LRU is a classical algorithm and has been widely used, it lacks consideration for the environment and workloads. As a result, it cannot achieve good performance under many scenarios. In this paper, we propose a novel cache replacement algorithm, least partition weight(LPW). LPW takes comprehensive consideration of different factors affecting system performance, such as partition size, computational cost, and reference count. The LPW algorithm was implemented in Spark and compared against the LRU as well as other state-of-the-art mechanisms. Our detailed experiments indicate that LPW obviously outperforms its counterparts and can reduce the execution time by up to 75% under typical workloads. Furthermore, the decreasing eviction frequency also shows the LPW algorithm can generate more reasonable predictions.
Mashup developers often need to find open application programming interfaces(APIs) for their composition application development. Although most enterprises and service organizations have encapsulated their businesses ...
详细信息
Mashup developers often need to find open application programming interfaces(APIs) for their composition application development. Although most enterprises and service organizations have encapsulated their businesses or resources online as open APIs, finding the right high-quality open APIs is not an easy task from a library with several open APIs. To solve this problem, this paper proposes a deep learning-based open API recommendation(DLOAR) approach. First, the hierarchical density-based spatial clustering of applications with a noise topic model is constructed to build topic models for Mashup clusters. Second,developers' requirement keywords are extracted by the Text Rank algorithm, and the language model is built. Third, a neural network-based three-level similarity calculation is performed to find the most relevant open APIs. Finally, we complement the relevant information of open APIs in the recommended list to help developers make better choices. We evaluate the DLOAR approach on a real dataset and compare it with commonly used open API recommendation approaches: term frequency-inverse document frequency, latent dirichlet allocation, Word2Vec, and Sentence-BERT. The results show that the DLOAR approach has better performance than the other approaches in terms of precision, recall, F1-measure, mean average precision,and mean reciprocal rank.
Edge is the key information in the process of image smoothing. Some edges, especially the weak edges, are difficult to maintain, which result in the local area being over-smoothed. For the protection of weak edges, we...
详细信息
Edge is the key information in the process of image smoothing. Some edges, especially the weak edges, are difficult to maintain, which result in the local area being over-smoothed. For the protection of weak edges, we propose an image smoothing algorithm based on global sparse structure and parameter adaptation. The algorithm decomposes the image into high frequency and low frequency part based on global sparse structure. The low frequency part contains less texture information which is relatively easy to smoothen. The high frequency part is more sensitive to edge information so it is more suitable for the selection of smoothing parameters. To reduce the computational complexity and improve the effect, we propose a bicubic polynomial fitting method to fit all the sample values into a surface. Finally, we use Alternating Direction Method of Multipliers (ADMM) to unify the whole algorithm and obtain the smoothed results by iterative optimization. Compared with traditional methods and deep learning methods, as well as the application tasks of edge extraction, image abstraction, pseudo-boundary removal, and image enhancement, it shows that our algorithm can preserve the local weak edge of the image more effectively, and the visual effect of smoothed results is better.
Travel time estimation(TTE)is a fundamental task to build intelligent transportation ***,most existing TTE solutions design models upon simple homogeneous graphs and ignore the heterogeneity of traffic networks,where,...
详细信息
Travel time estimation(TTE)is a fundamental task to build intelligent transportation ***,most existing TTE solutions design models upon simple homogeneous graphs and ignore the heterogeneity of traffic networks,where,e.g.,main roads typically contribute differently from side *** terms of spatial dimension,few studies consider the dynamic spatial correlations across road segments,e.g.,the traffic speed/volume on road segment A may correlate with the traffic speed/volume on road segment B,where A and B could be adjacent or non-adjacent,and such correlations may vary across *** terms of temporal dimension,even fewer studies consider the dynamic temporal dependences,where,e.g.,the historical states of road A may directly correlate with the recent state of A,and may also indirectly correlate with the recent state of road *** track all aforementioned issues of existing TTE approaches,we provide HDTTE,a solution that employs heterogeneous and dynamic spatio-temporal predictive ***,we first design a general multi-relational graph constructor that extracts hidden heterogeneous information of road segments,where we model road segments as nodes and model correlations as edges in the multi-relational ***,we propose a dynamic graph attention convolution module that aggregates dynamic spatial dependence of neighbor roads to focal *** also present a novel correlation-augmented temporal convolution module to capture the influence of states at past time steps on current traffic ***,in view of the periodic dependence of traffic,we develop a multi-scale adaptive fusion layer to enable HDTTE to exploit periodic patterns from recent,daily,and weekly traffic *** experimental study using real-life highway and urban datasets demonstrates the validity of the approach and its advantage over others.
Mobile applications(apps for short)often need to display ***,inefficient image displaying(IID)issues are pervasive in mobile apps,and can severely impact app performance and user *** paper first establishes a descript...
详细信息
Mobile applications(apps for short)often need to display ***,inefficient image displaying(IID)issues are pervasive in mobile apps,and can severely impact app performance and user *** paper first establishes a descriptive framework for the image displaying procedures of IID *** on the descriptive framework,we conduct an empirical study of 216 real-world IID issues collected from 243 popular open-source Android apps to validate the presence and severity of IID issues,and then shed light on these issues’characteristics to support research on effective issue *** the findings of this study,we propose a static IID issue detection tool TAPIR and evaluate it with 243 real-world Android ***,49 and 64 previously-unknown IID issues in two different versions of 16 apps reported by TAPIR are manually confirmed as true positives,respectively,and 16 previously-unknown IID issues reported by TAPIR have been confirmed by developers and 13 have been ***,we further evaluate the performance impact of these detected IID issues and the performance improvement if they are *** results demonstrate that the IID issues detected by TAPIR indeed cause significant performance degradation,which further show the effectiveness and efficiency of TAPIR.
暂无评论