咨询与建议

限定检索结果

文献类型

  • 5,047 篇 会议
  • 3,480 篇 期刊文献
  • 27 册 图书

馆藏范围

  • 8,554 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 5,769 篇 工学
    • 4,498 篇 计算机科学与技术...
    • 3,690 篇 软件工程
    • 1,024 篇 信息与通信工程
    • 731 篇 控制科学与工程
    • 482 篇 电气工程
    • 471 篇 生物工程
    • 397 篇 机械工程
    • 364 篇 电子科学与技术(可...
    • 266 篇 光学工程
    • 253 篇 生物医学工程(可授...
    • 204 篇 化学工程与技术
    • 187 篇 仪器科学与技术
    • 168 篇 网络空间安全
    • 164 篇 动力工程及工程热...
    • 155 篇 安全科学与工程
    • 139 篇 建筑学
    • 134 篇 交通运输工程
    • 123 篇 土木工程
  • 2,673 篇 理学
    • 1,707 篇 数学
    • 534 篇 生物学
    • 506 篇 物理学
    • 461 篇 统计学(可授理学、...
    • 327 篇 系统科学
    • 211 篇 化学
  • 1,680 篇 管理学
    • 994 篇 管理科学与工程(可...
    • 750 篇 图书情报与档案管...
    • 302 篇 工商管理
  • 195 篇 医学
    • 158 篇 临床医学
    • 138 篇 基础医学(可授医学...
  • 192 篇 法学
    • 142 篇 社会学
  • 101 篇 经济学
  • 86 篇 教育学
  • 74 篇 农学
  • 27 篇 文学
  • 27 篇 艺术学
  • 24 篇 军事学
  • 2 篇 哲学

主题

  • 292 篇 computer science
  • 271 篇 laboratories
  • 210 篇 semantics
  • 172 篇 feature extracti...
  • 152 篇 computational mo...
  • 140 篇 data mining
  • 137 篇 software
  • 127 篇 training
  • 126 篇 software enginee...
  • 119 篇 algorithm design...
  • 115 篇 deep learning
  • 112 篇 optimization
  • 112 篇 wireless sensor ...
  • 105 篇 educational inst...
  • 100 篇 cloud computing
  • 96 篇 accuracy
  • 92 篇 software testing
  • 90 篇 application soft...
  • 90 篇 testing
  • 88 篇 costs

机构

  • 1,017 篇 state key labora...
  • 214 篇 state key labora...
  • 204 篇 national key lab...
  • 202 篇 department of co...
  • 172 篇 college of compu...
  • 167 篇 department of co...
  • 142 篇 university of ch...
  • 116 篇 tianjin key labo...
  • 116 篇 school of inform...
  • 107 篇 state key labora...
  • 103 篇 college of compu...
  • 102 篇 guangxi key labo...
  • 97 篇 state key labora...
  • 94 篇 beijing key labo...
  • 91 篇 school of comput...
  • 89 篇 key laboratory o...
  • 87 篇 school of softwa...
  • 87 篇 state key labora...
  • 81 篇 shandong provinc...
  • 75 篇 national enginee...

作者

  • 66 篇 gao yang
  • 66 篇 junping du
  • 48 篇 yin baocai
  • 42 篇 shi yinghuan
  • 41 篇 wang wei
  • 39 篇 sanglu lu
  • 38 篇 baocai yin
  • 38 篇 guihai chen
  • 37 篇 zhou zhi-hua
  • 37 篇 baowen xu
  • 34 篇 yu huiqun
  • 34 篇 xu baowen
  • 33 篇 shen linlin
  • 32 篇 dou wanchun
  • 30 篇 shen furao
  • 30 篇 zhang hua
  • 30 篇 zhao jian
  • 29 篇 fan guisheng
  • 29 篇 li wu-jun
  • 28 篇 li xuandong

语言

  • 8,031 篇 英文
  • 266 篇 其他
  • 263 篇 中文
  • 3 篇 德文
  • 1 篇 法文
  • 1 篇 日文
检索条件"机构=Computer Software Technology Laboratory"
8554 条 记 录,以下是21-30 订阅
排序:
Large-Scale Traffic Flow Forecast with Lightweight LLM in Edge Intelligence
收藏 引用
IEEE Internet of Things Magazine 2025年 第1期8卷 12-18页
作者: Rong, Yi Mao, Yingchi He, Xiaoming Chen, Mingkai College of Computer and Software Hohai University China College of Internet of Things Nanjing University of Posts and Telecommunications China Nanjing University of Posts and Telecommunications Laboratory of Broadband Wireless Communication and Sensor Network Technology China
Large-scale traffic flow forecasting affiliated with the time is valuable for the management in Intelligent Transportation Systems (ITS). Recently, Large Language Models (LLMs) have shown the prominence on this issue.... 详细信息
来源: 评论
Cross-graph Knowledge Exchange for Personalized Response Generation in Dialogue Systems
收藏 引用
IEEE Internet of Things Journal 2025年 第10期12卷 13769-13789页
作者: Dong, Yuezhou Qin, Ke Ke, Pei Liang, Shuang Luo, Guangchun National Key Laboratory of Intelligent Collaborative Computing China University of Electronic Science and Technology of China School of Computer Science and Engineering Chengdu China University of Electronic Science and Technology of China National Key Laboratory of Intelligent Collaborative Computing Chengdu China University of Electronic Science and Technology of China School of Information and Software Engineering Chengdu China
Recent advancements in language models have greatly improved dialogue systems, but they still face challenges in generating personalized responses that are consistent with the user's persona and dialogue context. ... 详细信息
来源: 评论
YFLM: An Improved Levenberg-Marquardt Algorithm for Global Bundle Adjustment  41st
YFLM: An Improved Levenberg-Marquardt Algorithm for Global ...
收藏 引用
41st computer Graphics International Conference, CGI 2024
作者: Peng, Jiaxin Li, Tao Jiang, Qin Liu, Jie Wang, Ruibo Laboratory of Software Engineering for Complex Systems School of Computer Science National University of Defense Technology Hunan Changsha410073 China Parallel and Distributed Processing Laboratory School of Computer Science National University of Defense Technology Hunan Changsha410073 China
The conventional Levenberg-Marquardt (LM) algorithm is a state-of-the-art trust-region optimization method for solving bundle adjustment problems in the Structure-from-Motion community, which not only takes advantage ... 详细信息
来源: 评论
MA-MFIF: When misaligned multi-focus Image fusion meets deep homography estimation
收藏 引用
Multimedia Tools and Applications 2025年 第12期84卷 10877-10898页
作者: Zhao, Baojun Luo, Fei Fuentes, Joel Ding, Weichao Gu, Chunhua School of Information Science and Engineering East China University of Science and Technology Shanghai200237 China Shanghai Key Laboratory of Computer Software Evaluating and Testing Shanghai China Department of Computer Science and Information Technologies Universidad del Bio-Bio Chillán3780000 Chile
Multi-focus image fusion is a technique that combines multiple out-of-focus images to enhance the overall image quality. It has gained significant attention in recent years, thanks to the advancements in deep learning... 详细信息
来源: 评论
RandoMix: a mixed sample data augmentation method with multiple mixed modes
收藏 引用
Multimedia Tools and Applications 2025年 第8期84卷 4343-4359页
作者: Liu, Xiaoliang Shen, Furao Zhao, Jian Nie, Changhai National Key Laboratory for Novel Software Technology Nanjing University Nanjing China Department of Computer Science and Technology Nanjing University Nanjing China School of Artificial Intelligence Nanjing University Nanjing China School of Electronic Science and Engineering Nanjing University Nanjing China
Data augmentation plays a crucial role in enhancing the robustness and performance of machine learning models across various domains. In this study, we introduce a novel mixed-sample data augmentation method called Ra... 详细信息
来源: 评论
MARO: Enabling Full MPI Automatic Refactoring in DSL-Based Programming Framework  24th
MARO: Enabling Full MPI Automatic Refactoring in DSL-Based ...
收藏 引用
24th International Conference on Algorithms and Architectures for Parallel Processing, ICA3PP 2024
作者: Lei, Tong Chen, Zongjing Che, Yonggang Xu, Chuanfu Laboratory of Digitizing Software for Frontier Equipment National University of Defense Technology Changsha410073 China National Key Laboratory of Parallel and Distributed Computing College of Computer Science and Technology National University of Defense Technology Changsha410073 China
Currently, the landscape of computer hardware architecture presents the characteristics of heterogeneity and diversity, prompting widespread attention to cross-platform portable parallel programming techniques. Most e... 详细信息
来源: 评论
DIG: Improved DINO for Graffiti Detection
收藏 引用
IEEE Transactions on Systems, Man, and Cybernetics: Systems 2025年 第5期55卷 3557-3569页
作者: Wang, Bingshu Mao, Qianchen Liu, Aifei Chen, Long Chen, C. L. Philip Northwestern Polytechnical University School of Software Xi’an710129 China Shenzhen University Guangdong Key Laboratory of Intelligent Information Processing Shenzhen Key Laboratory of Media Security Shenzhen518060 China University of Macao Department of Computer and Information Science China South China University of Technology School of Computer Science and Engineering Guangzhou510641 China
Graffiti detection is essential in historic building protection and urban neighborhood management. Graffiti detection has made significant progress in recent years based on the development of deep learning. However, s... 详细信息
来源: 评论
Complementary Learning System Theory-based Active Learning for Audio Classification
Complementary Learning System Theory-based Active Learning f...
收藏 引用
2025 IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2025
作者: Geng, Hui Gao, Zijian Wan, Tianjiao Feng, Dawei Wang, Changjian Xu, Kele College of Computer Science and Technology National University of Defense Technology Changsha China State Key Laboratory of Complex & Critical Software Environment Changsha China
Deep learning has significantly advanced the audio classification, achieving remarkable results. However, these successes often rely on extensive manual annotation of audio, a labor-intensive and costly process. Activ... 详细信息
来源: 评论
ICCG:low-cost and efficient consistency with adaptive synchronization for metadata replication
收藏 引用
Frontiers of computer Science 2025年 第1期19卷 53-70页
作者: Chenhao ZHANG Liang WANG Jing SHANG Zhiwen XIAO Limin XIAO Meng HAN Bing WEI Runnan SHEN Jinquan WANG State Key Laboratory of Software Development Environment Beihang UniversityBeijing 100191China School of Computer Science and Engineering Beihang UniversityBeijing 100191China School of Cyberspace Security Hainan UniversityHaikou 570228China China Mobile Information Technology Center Beijing 100033China
The rapid growth in the storage scale of wide-area distributed file systems (DFS) calls for fast and scalable metadata management. Metadata replication is the widely used technique for improving the performance and sc... 详细信息
来源: 评论
MG+: Towards Efficient Context Inconsistency Detection by Minimized Link Generation
MG+: Towards Efficient Context Inconsistency Detection by Mi...
收藏 引用
作者: Chen, Chuyang Wang, Huiyan Zhang, Lingyu Xu, Chang Yu, Ping State Key Laboratory for Novel Software Technology Nanjing University Jiangsu Nanjing China School of Computer Science Nanjing University Jiangsu Nanjing China Software Institute Nanjing University Jiangsu Nanjing China
Self-adaptive applications are becoming increasingly attractive, with the ability to smartly understand their runtime environments (or contexts) and deliver adaptive services, for example, location-aware navigation or... 详细信息
来源: 评论