This study introduces a novel generative adversarial network (GAN)-based Dual-stage Teacher-Student Representation Learning (GDL) framework designed to extract effective representations from unlabeled data for cardiac...
详细信息
End-to-end training has emerged as a prominent trend in speech recognition, with Conformer models effectively integrating Transformer and CNN architectures. However, their complexity and high computational cost pose d...
详细信息
This paper explores the global spread of the COVID-19 virus since 2019, impacting 219 countries worldwide. Despite the absence of a definitive cure, the utilization of artificial intelligence (AI) methods for disease ...
详细信息
This paper explores the global spread of the COVID-19 virus since 2019, impacting 219 countries worldwide. Despite the absence of a definitive cure, the utilization of artificial intelligence (AI) methods for disease diagnosis has demonstrated commendable effectiveness in promptly diagnosing patients and curbing infection transmission. The study introduces a deep learning-based model tailored for COVID-19 detection, leveraging three prevalent medical imaging modalities: computed tomography (CT), chest X-ray (CXR), and Ultrasound. Various deep Transfer Learning Convolutional Neural Network-based (CNN) models have undergone assessment for each imaging modality. For each imaging modality, this study has selected the two most accurate models based on evaluation metrics such as accuracy and loss. Additionally, efforts have been made to prune unnecessary weights from these models to obtain more efficient and sparse models. By fusing these pruned models, enhanced performance has been achieved. The models have undergone rigorous training and testing using publicly available real-world medical datasets, focusing on classifying these datasets into three distinct categories: Normal, COVID-19 Pneumonia, and non-COVID-19 Pneumonia. The primary objective is to develop an optimized and swift model through strategies like Transfer Learning, Ensemble Learning, and reducing network complexity, making it easier for storage and transfer. The results of the trained network on test data exhibit promising outcomes. The accuracy of these models on the CT scan, X-ray, and ultrasound datasets stands at 99.4%, 98.9%, and 99.3%, respectively. Moreover, these models’ sizes have been substantially reduced and optimized by 51.93%, 38.00%, and 69.07%, respectively. This study proposes a computer-aided-coronavirus-detection system based on three standard medical imaging techniques. The intention is to assist radiologists in accurately and swiftly diagnosing the disease, especially during the screen
Exploration strategy design is a challenging problem in reinforcement learning(RL),especially when the environment contains a large state space or sparse *** exploration,the agent tries to discover unexplored(novel)ar...
详细信息
Exploration strategy design is a challenging problem in reinforcement learning(RL),especially when the environment contains a large state space or sparse *** exploration,the agent tries to discover unexplored(novel)areas or high reward(quality)*** existing methods perform exploration by only utilizing the novelty of *** novelty and quality in the neighboring area of the current state have not been well utilized to simultaneously guide the agent’s *** address this problem,this paper proposes a novel RL framework,called clustered reinforcement learning(CRL),for efficient exploration in *** adopts clustering to divide the collected states into several clusters,based on which a bonus reward reflecting both novelty and quality in the neighboring area(cluster)of the current state is given to the *** leverages these bonus rewards to guide the agent to perform efficient ***,CRL can be combined with existing exploration strategies to improve their performance,as the bonus rewards employed by these existing exploration strategies solely capture the novelty of *** on four continuous control tasks and six hard-exploration Atari-2600 games show that our method can outperform other state-of-the-art methods to achieve the best performance.
In multi-institutional patient data sharing scenarios, maintaining fine-grained access control while safeguarding privacy and adapting to real-world environments is crucial. Traditional attribute-based encryption (ABE...
详细信息
Multi-path avoidance routing for wireless sensor networks (WSNs) is a secure routing paradigm against adversaries with unbounded computational power. The key idea of avoidance routing is to encode a message into sever...
详细信息
Multi-path avoidance routing for wireless sensor networks (WSNs) is a secure routing paradigm against adversaries with unbounded computational power. The key idea of avoidance routing is to encode a message into several pieces by the XOR coding, and each piece is routed via different paths. Then, an adversary cannot obtain the original message unless she eavesdrops on all message pieces from all the paths. In this paper, we extend such an approach into secure multicast routing, which is a one-to-many communication primitive. To this end, we propose the multi-tree-based avoidance multicast routing protocol (AMRP) for WSNs, in which a set of adversary disjoint trees is discovered, i.e., a set of multicast trees with no common adversaries. When a set of multicast trees is adversary disjoint, no adversary can eavesdrop on all message pieces to recover the original message. In addition, optimized AMRP (OAMRP) is proposed in order to reduce the control overhead of AMRP, where additional multicast trees are used for only a subset of destination nodes with no single safe tree. The simulation results demonstrate that the proposed protocols achieve higher secure delivery rates than a simple extension of the existing unicast avoidance routing protocol. IEEE
Long-term urban traffic flow prediction is an important task in the field of intelligent transportation,as it can help optimize traffic management and improve travel *** improve prediction accuracy,a crucial issue is ...
详细信息
Long-term urban traffic flow prediction is an important task in the field of intelligent transportation,as it can help optimize traffic management and improve travel *** improve prediction accuracy,a crucial issue is how to model spatiotemporal dependency in urban traffic *** recent years,many studies have adopted spatiotemporal neural networks to extract key information from traffic ***,most models ignore the semantic spatial similarity between long-distance areas when mining spatial *** also ignore the impact of predicted time steps on the next unpredicted time step for making long-term ***,these models lack a comprehensive data embedding process to represent complex spatiotemporal *** paper proposes a multi-scale persistent spatiotemporal transformer(MSPSTT)model to perform accurate long-term traffic flow prediction in *** adopts an encoder-decoder structure and incorporates temporal,periodic,and spatial features to fully embed urban traffic data to address these *** model consists of a spatiotemporal encoder and a spatiotemporal decoder,which rely on temporal,geospatial,and semantic space multi-head attention modules to dynamically extract temporal,geospatial,and semantic *** spatiotemporal decoder combines the context information provided by the encoder,integrates the predicted time step information,and is iteratively updated to learn the correlation between different time steps in the broader time range to improve the model’s accuracy for long-term *** on four public transportation datasets demonstrate that MSPSTT outperforms the existing models by up to 9.5%on three common metrics.
In the contemporary landscape, autonomous vehicles (AVs) have emerged as a prominent technological advancement globally. Despite their widespread adoption, significant hurdles remain, with security standing out as a c...
详细信息
To improve the accuracy of steel surface defect detection, this study proposes an improved multi-directional optimization model based on the YOLOv10n algorithm. First, we introduce innovations to the convolution (C2F)...
详细信息
Hypernym detection and discovery are fundamental tasks in natural language *** former task aims to identify all possible hypernyms of a given hyponym term,whereas the latter attempts to determine whether the given two...
详细信息
Hypernym detection and discovery are fundamental tasks in natural language *** former task aims to identify all possible hypernyms of a given hyponym term,whereas the latter attempts to determine whether the given two terms hold a hypernymy relation or *** research on hypernym detection and discovery tasks projects a term into various semantic spaces with single mapping *** their success,these methods may not be adequate in capturing complex semantic relevance between hyponym/hypernymy pairs in two ***,they may fall short in modeling the hierarchical structure in the hypernymy relations,which may help them learn better term ***,the polysemy phenomenon that hypernyms may express distinct senses is *** this paper,we propose a Multi-Projection Recurrent model(MPR)to simultaneously capture the hierarchical relationships between terms and deal with diverse senses caused by the polysemy ***,we build a multi-projection mapping block to deal with the polysemy phenomenon,which learns various word senses by multiple ***,we adopt a hierarchy-aware recurrent block with the recurrent operation followed by a multi-hop aggregation module to capture the hierarchical structure of hypernym *** on 11 benchmark datasets in various task settings illustrate that our multi-projection recurrent model outperforms the *** experimental analysis and case study demonstrate that our multi-projection module and the recurrent structure are effective for hypernym detection and discovery tasks.
暂无评论