Tomato leaf diseases significantly impact crop production,necessitating early detection for sustainable *** Learning(DL)has recently shown excellent results in identifying and classifying tomato leaf ***,current DL me...
详细信息
Tomato leaf diseases significantly impact crop production,necessitating early detection for sustainable *** Learning(DL)has recently shown excellent results in identifying and classifying tomato leaf ***,current DL methods often require substantial computational resources,hindering their application on resource-constrained *** propose the Deep Tomato Detection Network(DTomatoDNet),a lightweight DL-based framework comprising 19 learnable layers for efficient tomato leaf disease classification to overcome *** Convn kernels used in the proposed(DTomatoDNet)framework is 1×1,which reduces the number of parameters and helps in more detailed and descriptive feature extraction for *** proposed DTomatoDNet model is trained from scratch to determine the classification success rate.10,000 tomato leaf images(1000 images per class)from the publicly accessible dataset,covering one healthy category and nine disease categories,are utilized in training the proposed DTomatoDNet *** specifically,we classified tomato leaf images into Target Spot(TS),Early Blight(EB),Late Blight(LB),Bacterial Spot(BS),Leaf Mold(LM),Tomato Yellow Leaf Curl Virus(YLCV),Septoria Leaf Spot(SLS),Spider Mites(SM),Tomato Mosaic Virus(MV),and Tomato Healthy(H).The proposed DTomatoDNet approach obtains a classification accuracy of 99.34%,demonstrating excellent accuracy in differentiating between tomato *** model could be used on mobile platforms because it is lightweight and designed with fewer *** farmers can utilize the proposed DTomatoDNet methodology to detect disease more quickly and easily once it has been integrated into mobile platforms by developing a mobile application.
The Message Passing Interface (MPI) is a widely accepted standard for parallel computing on distributed ***, MPI implementations can contain defects that impact the reliability and performance of parallelapplications....
详细信息
The Message Passing Interface (MPI) is a widely accepted standard for parallel computing on distributed ***, MPI implementations can contain defects that impact the reliability and performance of parallelapplications. Detecting and correcting these defects is crucial, yet there is a lack of published models specificallydesigned for correctingMPI defects. To address this, we propose a model for detecting and correcting MPI defects(DC_MPI), which aims to detect and correct defects in various types of MPI communication, including blockingpoint-to-point (BPTP), nonblocking point-to-point (NBPTP), and collective communication (CC). The defectsaddressed by the DC_MPI model include illegal MPI calls, deadlocks (DL), race conditions (RC), and messagemismatches (MM). To assess the effectiveness of the DC_MPI model, we performed experiments on a datasetconsisting of 40 MPI codes. The results indicate that the model achieved a detection rate of 37 out of 40 codes,resulting in an overall detection accuracy of 92.5%. Additionally, the execution duration of the DC_MPI modelranged from 0.81 to 1.36 s. These findings show that the DC_MPI model is useful in detecting and correctingdefects in MPI implementations, thereby enhancing the reliability and performance of parallel applications. TheDC_MPImodel fills an important research gap and provides a valuable tool for improving the quality ofMPI-basedparallel computing systems.
The integration of renewable energy sources inherently reduces power system inertia, which can result in a higher rate of change of frequency. Moreover, reduced inertia also affects the small-signal stability and cont...
详细信息
The sixth-generation(6G) wireless network will support ubiquitous connectivity and diversified scenarios to satisfy the requirements of various emerging applications. Full spectrum is a key enabler for6G to achieve th...
详细信息
The sixth-generation(6G) wireless network will support ubiquitous connectivity and diversified scenarios to satisfy the requirements of various emerging applications. Full spectrum is a key enabler for6G to achieve the ambitious goal of a Tbps-scale data rate. In this paper, we first review the scenario and potential spectrum plan for 6G and then focus on SpectrumChain, a blockchain-based dynamic spectrumsharing(DSS) framework for 6G. The unique characteristics of blockchain for DSS are presented along with key technologies. Finally, the conclusion and future development trends are discussed.
In this paper, we propose a hybrid model structure combining CNN-LSTM and Fully Connected to improve the prediction of electric vehicle charging station occupancy efficiently. We conducted experiments on UK and Korean...
详细信息
Deep learning (DL) is known for its excellence in feature learning and its ability to deliver high-accuracy results. Its application to ECG biometric recognition has received increasing interest but is also accompanie...
详细信息
The existing software bug localization models treat the source file as natural language, which leads to the loss of syntactical and structure information of the source file. A bug localization model based on syntactic...
详细信息
The existing software bug localization models treat the source file as natural language, which leads to the loss of syntactical and structure information of the source file. A bug localization model based on syntactical and semantic information of source code is proposed. Firstly, abstract syntax tree(AST) is divided based on node category to obtain statement sequence. The statement tree is encoded into vectors to capture lexical and syntactical knowledge at the statement ***, the source code is transformed into vector representation by the sequence naturalness of the statement. Therefore,the problem of gradient vanishing and explosion caused by a large AST size is obviated when using AST to the represent source code. Finally, the correlation between bug reports and source files are comprehensively analyzed from three aspects of syntax, semantics and text to locate the buggy code. Experiments show that compared with other standard models, the proposed model improves the performance of bug localization, and it has good advantages in mean reciprocal rank(MRR), mean average precision(MAP) and Top N Rank.
The use of batteries as an energy storage medium has a very important role in the installation of renewable energy power plants, such as photovoltaics to overcome intermittency in photovoltaics and to maintain stable ...
详细信息
Sleep quality prediction in Internet of Things (IoT) involves leveraging a system of interrelated devices to gather as well as analyse related data. Smart devices like wearable devices or smart mattresses endlessly mo...
详细信息
In the field of computer vision and pattern recognition,knowledge based on images of human activity has gained popularity as a research *** recognition is the process of determining human behavior based on an *** impl...
详细信息
In the field of computer vision and pattern recognition,knowledge based on images of human activity has gained popularity as a research *** recognition is the process of determining human behavior based on an *** implemented an Extended Kalman filter to create an activity recognition system *** proposed method applies an HSI color transformation in its initial stages to improve the clarity of the frame of the *** minimize noise,we use Gaussian *** of silhouette using the statistical *** use Binary Robust Invariant Scalable Keypoints(BRISK)and SIFT for feature *** next step is to perform feature discrimination using Gray *** that,the features are input into the Extended Kalman filter and classified into relevant human activities according to their definitive *** experimental procedure uses the SUB-Interaction and HMDB51 datasets to a 0.88%and 0.86%recognition rate.
暂无评论