The research intends to create an application which is able to analyse sales data in a motorcycle company to predict the types of spare parts which should be stocked. This prediction is crucial since problems are ofte...
The research intends to create an application which is able to analyse sales data in a motorcycle company to predict the types of spare parts which should be stocked. This prediction is crucial since problems are often encountered while restocking. For instance, when there have been some imprecisions occurring in deciding regarding the types of spare parts to restock, the spare parts accumulate. It can cause inefficiency in terms of storage, the products quality deteriorates due to having been stored for too long, and sometimes the best-selling products are not available in the warehouse. This application is developed with Naïve Bayes Classifier (NBC) method which has a high accuracy in predicting future occurrences. This method works by calculating the probability value in each attribute class and determining the optimal probability value. From the test results, 4500 training data with 200 sample test data has 90% similarity with the results of the restock decision without application. For 500 test data, the similarity was 96%. It is proven that this method has a high accuracy so that it can help the decision makers solved the company problem in predicting the types of motorcycle parts to be restocked.
The purpose of this study is to create an application that functions automatically with high accuracy when analyzing bank customer data. This needed due to non-performing loans occurring frequently caused by the inacc...
The purpose of this study is to create an application that functions automatically with high accuracy when analyzing bank customer data. This needed due to non-performing loans occurring frequently caused by the inaccuracy of credit analysts in the assessment of creditworthiness. This can be seen in the incident occurred in a public bank located in Bandung. This bank does not have the database that serves to accommodate data history and the method used in assessing creditworthiness is merely based on the simple statistical analysis. This leads to reduced accuracy and speed in the decision-making process. This research applies Naïve Bayes Classifier (NBC) method, a Data Mining technique. This helps credit analysts to select customers who are truly eligible to be given credit so that non-performing loan can be avoided. NBC calculates the probability of one class from each group of attributes and determines which class is most optimal. The accuracy of the NBC sampling test from 500 data is 95% compared to the decision made by a credit analyst. It can be concluded that this application is very helpful for credit analysts in recommending customers who are eligible for a loan to the bank’s decision maker.
Colorectal cancer (CRC) is a leading cause of mortality worldwide. We conducted a genome-wide association study meta-analysis of 100,204 CRC cases and 154,587 controls of European and east Asian ancestry, identifying ...
详细信息
Colorectal cancer (CRC) is a leading cause of mortality worldwide. We conducted a genome-wide association study meta-analysis of 100,204 CRC cases and 154,587 controls of European and east Asian ancestry, identifying 205 independent risk associations, of which 50 were unreported. We performed integrative genomic, transcriptomic and methylomic analyses across large bowel mucosa and other tissues. Transcriptome- and methylome-wide association studies revealed an additional 53 risk associations. We identified 155 high-confidence effector genes functionally linked to CRC risk, many of which had no previously established role in CRC. These have multiple different functions and specifically indicate that variation in normal colorectal homeostasis, proliferation, cell adhesion, migration, immunity and microbial interactions determines CRC risk. Crosstissue analyses indicated that over a third of effector genes most probably act outside the colonic mucosa. Our findings provide insights into colorectal oncogenesis and highlight potential targets across tissues for new CRC treatment and chemoprevention strategies.
The purpose of this study is to create an application which functions automatically with high accuracy when analyzing bank customer data. This needed due to non-performing loans occurring frequently caused by the inac...
The purpose of this study is to create an application which functions automatically with high accuracy when analyzing bank customer data. This needed due to non-performing loans occurring frequently caused by the inaccuracy of credit analysts in the assessment of creditworthiness. This can be seen in the incident occurred in a public bank located in Bandung. This bank does not have the database that serves to accommodate data history and the method used in assessing creditworthiness is merely based on the simple statistical analysis. This leads to reduced accuracy and speed in the decision-making process. This research applies Naïve Bayes Classifier (NBC) method, a Data Mining technique. This helps credit analysts to select customers who are truly eligible to be given credit so that non-performing loan can be avoided. NBC calculates the probability of one class from each group of attributes and determines which class is most optimal. The accuracy of the NBC sampling test from 501 data is 94% compared to the decision made by a credit analyst. It can be concluded that this application is very helpful for credit analysts in recommending customers who are eligible for a loan to the bank’s decision maker.
High blood pressure is a highly heritable and modifiable risk factor for cardiovascular disease. We report the largest genetic association study of blood pressure traits (systolic, diastolic and pulse pressure) to dat...
详细信息
High blood pressure is a highly heritable and modifiable risk factor for cardiovascular disease. We report the largest genetic association study of blood pressure traits (systolic, diastolic and pulse pressure) to date in over 1 million people of European ancestry. We identify 535 novel blood pressure loci that not only offer new biological insights into blood pressure regulation but also highlight shared genetic architecture between blood pressure and lifestyle exposures. Our findings identify new biological pathways for blood pressure regulation with potential for improved cardiovascular disease prevention in the future.
Transcriptomic imputation approaches combine eQTL reference panels with large-scale genotype data in order to test associations between disease and gene expression. These genic associations could elucidate signals in ...
详细信息
Transcriptomic imputation approaches combine eQTL reference panels with large-scale genotype data in order to test associations between disease and gene expression. These genic associations could elucidate signals in complex genome-wide association study (GWAS) loci and may disentangle the role of different tissues in disease development. We used the largest eQTL reference panel for the dorso-lateral prefrontal cortex (DLPFC) to create a set of gene expression predictors and demonstrate their utility. We applied DLPFC and 12 GTEx-brain predictors to 40,299 schizophrenia cases and 65,264 matched controls for a large transcriptomic imputation study of schizophrenia. We identified 413 genic associations across 13 brain regions. Stepwise conditioning identified 67 non-MHC genes, of which 14 did not fall within previous GWAS loci. We identified 36 significantly enriched pathways, including hexosaminidase-A deficiency, and multiple porphyric disorder pathways. We investigated developmental expression patterns among the 67 non-MHC genes and identified specific groups of pre- and postnatal expression.
Summary Background Across low-income and middle-income countries (LMICs), one in ten deaths in children younger than 5 years is attributable to diarrhoea. The substantial between-country variation in both diarrhoea in...
Summary Background Across low-income and middle-income countries (LMICs), one in ten deaths in children younger than 5 years is attributable to diarrhoea. The substantial between-country variation in both diarrhoea incidence and mortality is attributable to interventions that protect children, prevent infection, and treat disease. Identifying subnational regions with the highest burden and mapping associated risk factors can aid in reducing preventable childhood *** We used Bayesian model-based geostatistics and a geolocated dataset comprising 15 072 746 children younger than 5 years from 466 surveys in 94 LMICs, in combination with findings of the Global Burden of Diseases, Injuries, and Risk Factors study (GBD) 2017, to estimate posterior distributions of diarrhoea prevalence, incidence, and mortality from 2000 to 2017. From these data, we estimated the burden of diarrhoea at varying subnational levels (termed units) by spatially aggregating draws, and we investigated the drivers of subnational patterns by creating aggregated risk factor *** The greatest declines in diarrhoeal mortality were seen in south and southeast Asia and South America, where 54·0% (95% uncertainty interval [UI] 38·1-65·8), 17·4% (7·7-28·4), and 59·5% (34·2-86·9) of units, respectively, recorded decreases in deaths from diarrhoea greater than 10%. Although children in much of Africa remain at high risk of death due to diarrhoea, regions with the most deaths were outside Africa, with the highest mortality units located in Pakistan. Indonesia showed the greatest within-country geographical inequality; some regions had mortality rates nearly four times the average country rate. Reductions in mortality were correlated to improvements in water, sanitation, and hygiene (WASH) or reductions in child growth failure (CGF). Similarly, most high-risk areas had poor WASH, high CGF, or low oral rehydration therapy *** By co-analysing geospatial trends in d
暂无评论