Emotions have a significant impact on how people make decisions. Due to its potential applications in various fields, emotion intensity detection has attracted a lot of attention recently. Several methods have been pr...
详细信息
Medical imaging, a cornerstone of disease diagnosis and treatment planning, faces the hurdles of subjective interpretation and reliance on specialized expertise. Deep learning algorithms show improvements in automatin...
详细信息
Agriculture is crucial to the global economy, particularly in ensuring food security. Recent trends indicate that various plant diseases are causing substantial financial losses in the agricultural sector worldwide. T...
详细信息
Detecting and promptly identifying cracks on road surfaces is of paramount importance for preserving infrastructure integrity and ensuring the safety of road users, including both drivers and pedestrians. Presently, t...
详细信息
In the era of advancement in technology and modern agriculture, early disease detection of potato leaves will improve crop yield. Various researchers have focussed on disease due to different types of microbial infect...
详细信息
Images are used widely nowadays. Images are used in many fields such as medicine to terrain mapping. There is a need to compress the images and represent them in shorter form for effective transmission. Several techni...
详细信息
Internet of Things (IoT) enabled Wireless Sensor Networks (WSNs) is not only constitute an encouraging research domain but also represent a promising industrial trend that permits the development of various IoT-based ...
详细信息
With the continuous growth of cloud computing and virtualization technology, network function virtualization (NFV) techniques have been significantly enhanced. NFV has many advantages such as simplified services, prov...
详细信息
With the continuous growth of cloud computing and virtualization technology, network function virtualization (NFV) techniques have been significantly enhanced. NFV has many advantages such as simplified services, providing more flexible services, and reducing network capital and operational costs. However, it also poses new challenges that need to be addressed. A challenging problem with NFV is resource management, since the resources required by each virtualized network function (VNF) change with dynamic traffic variations, requiring automatic scaling of VNF resources. Due to the resource consumption importance, it is essential to propose an efficient resource auto-scaling method in the NFV networks. Inadequate or excessive utilization of VNF resources can result in diminished performance of the entire service chain, thereby affecting network performance. Therefore, predicting VNF resource requirements is crucial for meeting traffic demands. VNF behavior in networks is complex and nonlinear, making it challenging to model. By incorporating machine learning methods into resource prediction models, network service performance can be improved by addressing this complexity. As a result, this paper introduces a new auto-scaling architecture and algorithm to tackle the predictive VNF problem. Within the proposed architecture, there is a predictive VNF auto-scaling engine that comprises two modules: a predictive task scheduler and a predictive VNF auto-scaler. Furthermore, a prediction engine with a VNF resource predictor module has been designed. In addition, the proposed algorithm called GPAS is presented in three phases, VNF resource prediction using genetic programming (GP) technique, task scheduling and decision-making, and auto-scaling execution. The GPAS method is simulated in the KSN framework, a network environment based on NFV/SDN. In the evaluation results, the GPAS method shows better performance in SLA violation rate, resource usage, and response time when co
Suicide represents a poignant societal issue deeply entwined with mental well-being. While existing research primarily focuses on identifying suicide-related texts, there is a gap in the advanced detection of mental h...
详细信息
Utilizing the multi-dimensional (MD) space for constellation shaping has been proven to be an effective approach for achieving shaping gains. Despite there exists a variety of MD modulation formats tailored for specif...
详细信息
暂无评论