The Internet of Everything(IoE)based cloud computing is one of the most prominent areas in the digital big data *** approach allows efficient infrastructure to store and access big real-time data and smart IoE service...
详细信息
The Internet of Everything(IoE)based cloud computing is one of the most prominent areas in the digital big data *** approach allows efficient infrastructure to store and access big real-time data and smart IoE services from the *** IoE-based cloud computing services are located at remote locations without the control of the data *** data owners mostly depend on the untrusted Cloud Service Provider(CSP)and do not know the implemented security *** lack of knowledge about security capabilities and control over data raises several security *** Acid(DNA)computing is a biological concept that can improve the security of IoE big *** IoE big data security scheme consists of the Station-to-Station Key Agreement Protocol(StS KAP)and Feistel cipher *** paper proposed a DNA-based cryptographic scheme and access control model(DNACDS)to solve IoE big data security and access *** experimental results illustrated that DNACDS performs better than other DNA-based security *** theoretical security analysis of the DNACDS shows better resistance capabilities.
In the realm of deep learning, Generative Adversarial Networks (GANs) have emerged as a topic of significant interest for their potential to enhance model performance and enable effective data augmentation. This paper...
详细信息
With the rise of digital infrastructure and Internet of Things (IoT), a substantial amount of data is continuously generated that needs to be processed efficiently. While modern artificial intelligence (AI) approaches...
详细信息
In the context of high compression rates applied to Joint Photographic Experts Group(JPEG)images through lossy compression techniques,image-blocking artifacts may *** necessitates the restoration of the image to its o...
详细信息
In the context of high compression rates applied to Joint Photographic Experts Group(JPEG)images through lossy compression techniques,image-blocking artifacts may *** necessitates the restoration of the image to its original *** challenge lies in regenerating significantly compressed images into a state in which these become ***,this study focuses on the restoration of JPEG images subjected to substantial degradation caused by maximum lossy compression using Generative Adversarial Networks(GAN).The generator in this network is based on theU-Net *** features a newhourglass structure that preserves the characteristics of the deep *** addition,the network incorporates two loss functions to generate natural and high-quality images:Low Frequency(LF)loss and High Frequency(HF)*** loss uses a pretrained VGG-16 network and is configured using a specific layer that best represents *** can enhance the performance in the high-frequency *** contrast,LF loss is used to handle the low-frequency *** two loss functions facilitate the generation of images by the generator,which can mislead the discriminator while accurately generating high-and low-frequency ***,by removing the blocking effects frommaximum lossy compressed images,images inwhich identities could be recognized are *** study represents a significant improvement over previous research in terms of the image resolution performance.
The earthquake early warning (EEW) system provides advance notice of potentially damaging ground shaking. In EEW, early estimation of magnitude is crucial for timely rescue operations. A set of thirty-four features is...
详细信息
The earthquake early warning (EEW) system provides advance notice of potentially damaging ground shaking. In EEW, early estimation of magnitude is crucial for timely rescue operations. A set of thirty-four features is extracted using the primary wave earthquake precursor signal and site-specific information. In Japan's earthquake magnitude dataset, there is a chance of a high imbalance concerning the earthquakes above strong impact. This imbalance causes a high prediction error while training advanced machine learning or deep learning models. In this work, Conditional Tabular Generative Adversarial Networks (CTGAN), a deep machine learning tool, is utilized to learn the characteristics of the first arrival of earthquake P-waves and generate a synthetic dataset based on this information. The result obtained using actual and mixed (synthetic and actual) datasets will be used for training the stacked ensemble magnitude prediction model, MagPred, designed specifically for this study. There are 13295, 3989, and 1710 records designated for training, testing, and validation. The mean absolute error of the test dataset for single station magnitude detection using early three, four, and five seconds of P wave are 0.41, 0.40, and 0.38 MJMA. The study demonstrates that the Generative Adversarial Networks (GANs) can provide a good result for single-station magnitude prediction. The study can be effective where less seismic data is available. The study shows that the machine learning method yields better magnitude detection results compared with the several regression models. The multi-station magnitude prediction study has been conducted on prominent Osaka, Off Fukushima, and Kumamoto earthquakes. Furthermore, to validate the performance of the model, an inter-region study has been performed on the earthquakes of the India or Nepal region. The study demonstrates that GANs can discover effective magnitude estimation compared with non-GAN-based methods. This has a high potential
Thyroid nodules,a common disorder in the endocrine system,require accurate segmentation in ultrasound images for effective diagnosis and ***,achieving precise segmentation remains a challenge due to various factors,in...
详细信息
Thyroid nodules,a common disorder in the endocrine system,require accurate segmentation in ultrasound images for effective diagnosis and ***,achieving precise segmentation remains a challenge due to various factors,including scattering noise,low contrast,and limited resolution in ultrasound *** existing segmentation models have made progress,they still suffer from several limitations,such as high error rates,low generalizability,overfitting,limited feature learning capability,*** address these challenges,this paper proposes a Multi-level Relation Transformer-based U-Net(MLRT-UNet)to improve thyroid nodule *** MLRTUNet leverages a novel Relation Transformer,which processes images at multiple scales,overcoming the limitations of traditional encoding *** transformer integrates both local and global features effectively through selfattention and cross-attention units,capturing intricate relationships within the *** approach also introduces a Co-operative Transformer Fusion(CTF)module to combine multi-scale features from different encoding layers,enhancing the model’s ability to capture complex patterns in the ***,the Relation Transformer block enhances long-distance dependencies during the decoding process,improving segmentation *** results showthat the MLRT-UNet achieves high segmentation accuracy,reaching 98.2% on the Digital Database Thyroid Image(DDT)dataset,97.8% on the Thyroid Nodule 3493(TG3K)dataset,and 98.2% on the Thyroid Nodule3K(TN3K)*** findings demonstrate that the proposed method significantly enhances the accuracy of thyroid nodule segmentation,addressing the limitations of existing models.
Effective management of electricity consumption (EC) in smart buildings (SBs) is crucial for optimizing operational efficiency, cost savings, and ensuring sustainable resource utilization. Accurate EC prediction enabl...
详细信息
Fog computing extends cloud capabilities to the network edge, aiding IoT and users. It mitigates cloud issues like latency and reliability. However, fog’s limited resources pose security vulnerabilities like data the...
详细信息
Remote driving, an emergent technology enabling remote operations of vehicles, presents a significant challenge in transmitting large volumes of image data to a central server. This requirement outpaces the capacity o...
详细信息
Remote driving, an emergent technology enabling remote operations of vehicles, presents a significant challenge in transmitting large volumes of image data to a central server. This requirement outpaces the capacity of traditional communication methods. To tackle this, we propose a novel framework using semantic communications, through a region of interest semantic segmentation method, to reduce the communication costs by transmitting meaningful semantic information rather than bit-wise data. To solve the knowledge base inconsistencies inherent in semantic communications, we introduce a blockchain-based edge-assisted system for managing diverse and geographically varied semantic segmentation knowledge bases. This system not only ensures the security of data through the tamper-resistant nature of blockchain but also leverages edge computing for efficient management. Additionally, the implementation of blockchain sharding handles differentiated knowledge bases for various tasks, thus boosting overall blockchain efficiency. Experimental results show a great reduction in latency by sharding and an increase in model accuracy, confirming our framework's effectiveness.
In this paper,a robust and consistent COVID-19 emergency decision-making approach is proposed based on q-rung linear diophantine fuzzy set(q-RLDFS),differential evolutionary(DE)optimization principles,and evidential r...
详细信息
In this paper,a robust and consistent COVID-19 emergency decision-making approach is proposed based on q-rung linear diophantine fuzzy set(q-RLDFS),differential evolutionary(DE)optimization principles,and evidential reasoning(ER)*** proposed approach uses q-RLDFS in order to represent the evaluating values of the alternatives corresponding to the *** optimization is used to obtain the optimal weights of the attributes,and ER methodology is used to compute the aggregated q-rung linear diophantine fuzzy values(q-RLDFVs)of each *** the score values of alternatives are computed based on the aggregated *** alternative with the maximum score value is selected as a better *** applicability of the proposed approach has been illustrated in COVID-19 emergency decision-making system and sustainable energy planning ***,we have validated the proposed approach with a numerical ***,a comparative study is provided with the existing models,where the proposed approach is found to be robust to perform better and consistent in uncertain environments.
暂无评论