The cellular automaton (CA), a discrete model, is gaining popularity in simulations and scientific exploration across various domains, including cryptography, error-correcting codes, VLSI design and test pattern gener...
详细信息
The Intelligent Internet of Things(IIoT) involves real-world things that communicate or interact with each other through networking technologies by collecting data from these “things” and using intelligent approache...
详细信息
The Intelligent Internet of Things(IIoT) involves real-world things that communicate or interact with each other through networking technologies by collecting data from these “things” and using intelligent approaches, such as Artificial Intelligence(AI) and machine learning, to make accurate decisions. Data science is the science of dealing with data and its relationships through intelligent approaches. Most state-of-the-art research focuses independently on either data science or IIoT, rather than exploring their integration. Therefore, to address the gap, this article provides a comprehensive survey on the advances and integration of data science with the Intelligent IoT(IIoT) system by classifying the existing IoT-based data science techniques and presenting a summary of various characteristics. The paper analyzes the data science or big data security and privacy features, including network architecture, data protection, and continuous monitoring of data, which face challenges in various IoT-based systems. Extensive insights into IoT data security, privacy, and challenges are visualized in the context of data science for IoT. In addition, this study reveals the current opportunities to enhance data science and IoT market development. The current gap and challenges faced in the integration of data science and IoT are comprehensively presented, followed by the future outlook and possible solutions.
Crude oil prices (COP) profoundly influence global economic stability, with fluctuations reverberating across various sectors. Accurate forecasting of COP is indispensable for governments, policymakers, and stakeholde...
详细信息
In today’s era, smartphones are used in daily lives because they are ubiquitous and can be customized by installing third-party apps. As a result, the menaces because of these apps, which are potentially risky for u...
详细信息
The paper addresses the critical problem of application workflow offloading in a fog environment. Resource constrained mobile and Internet of Things devices may not possess specialized hardware to run complex workflow...
详细信息
The paper presents an approach for detecting Distributed Denial of Service (DDoS) attacks using machine learning and blockchain technology. With the increasing complexity and frequency of DDoS attacks, network securit...
详细信息
Corn, Rice, and Wheat serve as primary staple foods globally, playing a pivotal role in the economies of numerous countries. Despite their paramount importance, these cereal crops face susceptibility to various diseas...
详细信息
The management of healthcare data has significantly benefited from the use of cloud-assisted MediVault for healthcare systems, which can offer patients efficient and convenient digital storage services for storin...
详细信息
Device-to-Device (D2D) relaying helps improve the coverage range and throughput of the millimeter Wave (mmWave) networks. This work focuses on improving the uplink throughput in a single-cell mmWave-based Internet-of-...
详细信息
Rice is a major crop and staple food for more than half of the world’s population and plays a vital role in ensuring food security as well as the global economy pests and diseases pose a threat to the production of r...
详细信息
Rice is a major crop and staple food for more than half of the world’s population and plays a vital role in ensuring food security as well as the global economy pests and diseases pose a threat to the production of rice and have a substantial impact on the yield and quality of the crop. In recent times, deep learning methods have gained prominence in predicting rice leaf diseases. Despite the increasing use of these methods, there are notable limitations in existing approaches. These include a scarcity of extensive and diverse collections of leaf disease images, lower accuracy rates, higher time complexity, and challenges in real-time leaf disease detection. To address the limitations, we explicitly investigate various data augmentation approaches using different generative adversarial networks (GANs) for rice leaf disease detection. Along with the GAN model, advanced CNN-based classifiers have been applied to classify the images with improving data augmentation. Our approach involves employing various GANs to generate high-quality synthetic images. This strategy aims to tackle the challenges posed by limited and imbalanced datasets in the identification of leaf diseases. The key benefit of incorporating GANs in leaf disease detection lies in their ability to create synthetic images, effectively augmenting the dataset’s size, enhancing diversity, and reducing the risk of overfitting. For dataset augmentation, we used three distinct GAN architectures—namely simple GAN, CycleGAN, and DCGAN. Our experiments demonstrated that models utilizing the GAN-augmented dataset generally outperformed those relying on the non-augmented dataset. Notably, the CycleGAN architecture exhibited the most favorable outcomes, with the MobileNet model achieving an accuracy of 98.54%. These findings underscore the significant potential of GAN models in improving the performance of detection models for rice leaf diseases, suggesting their promising role in the future research within this doma
暂无评论