Deep learning has significantly advanced image processing in the medical domain, including the analysis of ultrasound (US) fetal images for prediction of fetal growth retardation. Before analysis of fetal images there...
详细信息
Enforcing admired machine learning approaches to huge data enhanced novel issues for researchers. Conventional libraries could not suitably fulfil the requirement of complex model with wide variety of data and system ...
详细信息
Speech emotion recognition(SER)uses acoustic analysis to find features for emotion recognition and examines variations in voice that are caused by *** number of features acquired with acoustic analysis is extremely hi...
详细信息
Speech emotion recognition(SER)uses acoustic analysis to find features for emotion recognition and examines variations in voice that are caused by *** number of features acquired with acoustic analysis is extremely high,so we introduce a hybrid filter-wrapper feature selection algorithm based on an improved equilibrium optimizer for constructing an emotion recognition *** proposed algorithm implements multi-objective emotion recognition with the minimum number of selected features and maximum ***,we use the information gain and Fisher Score to sort the features extracted from ***,we employ a multi-objective ranking method to evaluate these features and assign different importance to *** with high rankings have a large probability of being ***,we propose a repair strategy to address the problem of duplicate solutions in multi-objective feature selection,which can improve the diversity of solutions and avoid falling into local *** random forest and K-nearest neighbor classifiers,four English speech emotion datasets are employed to test the proposed algorithm(MBEO)as well as other multi-objective emotion identification *** results illustrate that it performs well in inverted generational distance,hypervolume,Pareto solutions,and execution time,and MBEO is appropriate for high-dimensional English SER.
The adoption of the technology of smart contracts to construct an e-appointment system has an array of advantages over conventional appointment systems. E-appointment system commitments can be instantly conducted and ...
详细信息
For a better understanding of the situation during a war or crisis, it is helpful to comprehend the public opinion. There are various social media networks which provide a platform for people across the world to expre...
详细信息
Human activity recognition (HAR) from sensory data is a crucial task for a wide variety of applications. The in-built inertial sensor facilities of commercial smartphones have made the data collection process easier. ...
详细信息
This research paper analyzes the use of machine learning techniques to predict effective radiated power (ERP) and enhance logistics efficiency in distribution management for smart transportation systems (STS). Three r...
详细信息
The efficiency of multi-objective evolutionary algorithms (MOEAs) in tackling issues with multiple objectives is examined. However, it is noted that current MOEA-based feature selection techniques often converge towar...
详细信息
The efficiency of multi-objective evolutionary algorithms (MOEAs) in tackling issues with multiple objectives is examined. However, it is noted that current MOEA-based feature selection techniques often converge towards the center of the Pareto front due to inadequate selection forces. The study proposes the utilization of a novel approach known as MOEA/D, which partitions complex multi-objective problems into smaller, more feasible single-objective sub-problems. Each sub-problem may then be addressed using an equal amount of computational resources. The predetermined size of the neighborhood used by MOEA/D may lead to a delay in the algorithm's merging and reduce the effectiveness of the failure. The paper proposes the Adaptive Neighbourhood Adjustment Strategy (ANAS) as a novel approach to improve the efficiency of multi-objective optimisation algorithms in order to tackle this issue. The ANAS algorithm allows for adaptive adjustment of the subproblem neighborhood size, hence enhancing the trade-off between merging and variety. In the following section of the study, a novel feature selection technique called MOGHHNS3/D-ANA is introduced. This technique utilizes ANAS to expand the potential solutions for a particular subproblem. The approach evaluates the chosen features using the Regulated Extreme Learning Machine (RELM) classifier on sixteen benchmark datasets. The experimental results demonstrate that MOGHHNS3/D-ANA outperforms four commonly employed multi-objective techniques in terms of accuracy, precision, recall, F1 score, coverage, hamming loss, ranking loss, and training time, error. The APBI approach in decomposition-based multi-objective optimization focuses on handling constraints by adjusting penalty parameters to guide the search towards feasible solutions. On the other hand, the ANA approach focuses on dynamically adjusting the neighborhood size or search direction based on the proximity of solutions in the detached space to adapt the search process.
In a collaborative social network data publishing setup, privacy preservation of individuals is a vital issue. Existing privacy-preserving techniques assume the existence of attackers from external data recipients and...
详细信息
This research proposes a highly effective soft computing paradigm for estimating the compressive strength(CS)of metakaolin-contained cemented *** proposed approach is a combination of an enhanced grey wolf optimizer(E...
详细信息
This research proposes a highly effective soft computing paradigm for estimating the compressive strength(CS)of metakaolin-contained cemented *** proposed approach is a combination of an enhanced grey wolf optimizer(EGWO)and an extreme learning machine(ELM).EGWO is an augmented form of the classic grey wolf optimizer(GWO).Compared to standard GWO,EGWO has a better hunting mechanism and produces an optimal *** EGWO was used to optimize the ELM structure and a hybrid model,ELM-EGWO,was *** train and validate the proposed ELM-EGWO model,a sum of 361 experimental results featuring five influencing factors was *** on sensitivity analysis,three distinct cases of influencing parameters were considered to investigate the effect of influencing factors on predictive *** consequences show that the constructed ELM-EGWO achieved the most accurate precision in both training(RMSE=0.0959)and testing(RMSE=0.0912)*** outcomes of the ELM-EGWO are significantly superior to those of deep neural networks(DNN),k-nearest neighbors(KNN),long short-term memory(LSTM),and other hybrid ELMs constructed with GWO,particle swarm optimization(PSO),harris hawks optimization(HHO),salp swarm algorithm(SSA),marine predators algorithm(MPA),and colony predation algorithm(CPA).The overall results demonstrate that the newly suggested ELM-EGWO has the potential to estimate the CS of metakaolin-contained cemented materials with a high degree of precision and robustness.
暂无评论