Underwater wireless sensor networks(UWSNs)rely on data aggregation to streamline routing operations by merging information at intermediate nodes before transmitting it to the ***,many existing data aggregation techniq...
详细信息
Underwater wireless sensor networks(UWSNs)rely on data aggregation to streamline routing operations by merging information at intermediate nodes before transmitting it to the ***,many existing data aggregation techniques are designed exclusively for static networks and fail to reflect the dynamic nature of underwater ***,conventional multi-hop data gathering techniques often lead to energy depletion problems near the sink,commonly known as the energy hole ***,cluster-based aggregation methods face significant challenges such as cluster head(CH)failures and collisions within clusters that degrade overall network *** address these limitations,this paper introduces an innovative framework,the Cluster-based Data Aggregation using Fuzzy Decision Model(CDAFDM),tailored for mobile *** proposed method has four main phases:clustering,CH selection,data aggregation,and *** CH selection,a fuzzy decision model is utilized to ensure efficient cluster head selection based on parameters such as residual energy,distance to the sink,and data delivery likelihood,enhancing network stability and energy *** the aggregation phase,CHs transmit a single,consolidated set of non-redundant data to the base station(BS),thereby reducing data duplication and saving *** adapt to the changing network topology,the re-clustering phase periodically updates cluster formations and reselects *** results show that CDAFDM outperforms current protocols such as CAPTAIN(Collection Algorithm for underwater oPTical-AcoustIc sensor Networks),EDDG(Event-Driven Data Gathering),and DCBMEC(Data Collection Based on Mobile Edge Computing)with a packet delivery ratio increase of up to 4%,an energy consumption reduction of 18%,and a data collection latency reduction of 52%.These findings highlight the framework’s potential for reliable and energy-efficient data aggregation mobile UWSNs.
In light of recent incidents involving the leakage of private photographs of Hollywood celebrities from iCloud, the need for robust methods to safeguard image content has gained paramount importance. This paper addres...
详细信息
In light of recent incidents involving the leakage of private photographs of Hollywood celebrities from iCloud, the need for robust methods to safeguard image content has gained paramount importance. This paper addresses this concern by introducing a novel framework for reversible image editing (RIT) supported by reversible data hiding with encrypted images (RDH-EI) techniques. Unlike traditional approaches vulnerable to hacking, this framework ensures both efficient and secure data embedding while maintaining the original image’s privacy. The framework leverages two established methods: secret writing and knowledge activity. While secret writing is susceptible to hacking due to the complex nature of cipher languages, RDH-EI-supported RIT adopts a more secure approach. It replaces the linguistic content of the original image with the semantics of a different image, rendering the encrypted image visually indistinguishable from a plaintext image. This novel substitution prevents cloud servers from detecting encrypted data, enabling the adoption of reversible data hiding (RDH) methods designed for plaintext images. The proposed framework offers several distinct advantages. Firstly, it ensures the confidentiality of sensitive information by concealing the linguistic content of the original image. Secondly, it supports reversible image editing, enabling the restoration of the original image from the encrypted version without any loss of data. Lastly, the integration of RDH techniques designed for plaintext images empowers the cloud server to embed supplementary data while preserving image quality. Incorporating convolutional neural network (CNN) and generative adversarial network (GAN) models, the framework ensures accurate data extraction and high-quality image restoration. The applications of this concealed knowledge are vast, spanning law enforcement, medical data privacy, and military communication. By addressing limitations of previous methods, it opens new avenues
Lung cancer is the most lethal form of cancer. This paper introduces a novel framework to discern and classify pulmonary disorders such as pneumonia, tuberculosis, and lung cancer by analyzing conventional X-ray and C...
详细信息
In or daily lives, maintaining the security of sensitive information has proven to be very difficult. communications sent frequently through a communication channel like the Internet may catch the attention of cracker...
详细信息
Accurately predicting the Remaining Useful Life(RUL)of lithium-ion batteries is crucial for battery management *** learning-based methods have been shown to be effective in predicting RUL by leveraging battery capacit...
详细信息
Accurately predicting the Remaining Useful Life(RUL)of lithium-ion batteries is crucial for battery management *** learning-based methods have been shown to be effective in predicting RUL by leveraging battery capacity time series ***,the representation learning of features such as long-distance sequence dependencies and mutations in capacity time series still needs to be *** address this challenge,this paper proposes a novel deep learning model,the MLP-Mixer and Mixture of Expert(MMMe)model,for RUL *** MMMe model leverages the Gated Recurrent Unit and Multi-Head Attention mechanism to encode the sequential data of battery capacity to capture the temporal features and a re-zero MLP-Mixer model to capture the high-level ***,we devise an ensemble predictor based on a Mixture-of-Experts(MoE)architecture to generate reliable RUL *** experimental results on public datasets demonstrate that our proposed model significantly outperforms other existing methods,providing more reliable and precise RUL predictions while also accurately tracking the capacity degradation *** code and dataset are available at the website of github.
Most blockchain systems currently adopt resource-consuming protocols to achieve consensus between miners;for example,the Proof-of-Work(PoW)and Practical Byzantine Fault Tolerant(PBFT)schemes,which have a high consumpt...
详细信息
Most blockchain systems currently adopt resource-consuming protocols to achieve consensus between miners;for example,the Proof-of-Work(PoW)and Practical Byzantine Fault Tolerant(PBFT)schemes,which have a high consumption of computing/communication resources and usually require reliable communications with bounded ***,these protocols may be unsuitable for Internet of Things(IoT)networks because the IoT devices are usually lightweight,battery-operated,and deployed in an unreliable wireless ***,this paper studies an efficient consensus protocol for blockchain in IoT networks via reinforcement ***,the consensus protocol in this work is designed on the basis of the Proof-of-Communication(PoC)scheme directly in a single-hop wireless network with unreliable communications.A distributed MultiAgent Reinforcement Learning(MARL)algorithm is proposed to improve the efficiency and fairness of consensus for miners in the blockchain *** this algorithm,each agent uses a matrix to depict the efficiency and fairness of the recent consensus and tunes its actions and rewards carefully in an actor-critic framework to seek effective *** results from the simulation show that the fairness of consensus in the proposed algorithm is guaranteed,and the efficiency nearly reaches a centralized optimal solution.
With their limitless potential for highly accurate decision-making behaviors, machine learning algorithms have emerged to influence the world of information systems. Algorithms designed for structured and unstructured...
详细信息
While single-modal visible light images or infrared images provide limited information,infrared light captures significant thermal radiation data,whereas visible light excels in presenting detailed texture ***-bining ...
详细信息
While single-modal visible light images or infrared images provide limited information,infrared light captures significant thermal radiation data,whereas visible light excels in presenting detailed texture ***-bining images obtained from both modalities allows for leveraging their respective strengths and mitigating individual limitations,resulting in high-quality images with enhanced contrast and rich texture *** capabilities hold promising applications in advanced visual tasks including target detection,instance segmentation,military surveillance,pedestrian detection,among *** paper introduces a novel approach,a dual-branch decomposition fusion network based on AutoEncoder(AE),which decomposes multi-modal features into intensity and texture information for enhanced *** contrast enhancement module(CEM)and texture detail enhancement module(DEM)are devised to process the decomposed images,followed by image fusion through the *** proposed loss function ensures effective retention of key information from the source images of both *** comparisons and generalization experiments demonstrate the superior performance of our network in preserving pixel intensity distribution and retaining texture *** the qualitative results,we can see the advantages of fusion details and local *** the quantitative experiments,entropy(EN),mutual information(MI),structural similarity(SSIM)and other results have improved and exceeded the SOTA(State of the Art)model as a whole.
From AI-assisted art creation to large language model (LLM)-powered ChatGPT, AI-generated contents and services are becoming a transforming force. It calls for the telecom industry to embrace the prospects of AIGC ser...
详细信息
With the invention of Internet-enabled devices,cloud and blockchain-based technologies,an online voting system can smoothly carry out election *** pandemic situations,citizens tend to develop panic about mass gatherin...
详细信息
With the invention of Internet-enabled devices,cloud and blockchain-based technologies,an online voting system can smoothly carry out election *** pandemic situations,citizens tend to develop panic about mass gatherings,which may influence the decrease in the number of *** urges a reliable,flexible,transparent,secure,and cost-effective voting *** proposed online voting system using cloud-based hybrid blockchain technology eradicates the flaws that persist in the existing voting system,and it is carried out in three phases:the registration phase,vote casting phase and vote counting phase.A timestamp-based authentication protocol with digital signature validates voters and candidates during the registration and vote casting *** smart contracts,third-party interventions are eliminated,and the transactions are secured in the blockchain ***,to provide accurate voting results,the practical Byzantine fault tolerance(PBFT)consensus mechanism is adopted to ensure that the vote has not been modified or ***,the overall performance of the proposed system is significantly better than that of the existing *** performance was analyzed based on authentication delay,vote alteration,response time,and latency.
暂无评论