Detecting dangerous driving behavior is a critical research area focused on identifying and preventing actions that could lead to traffic accidents, such as smoking, drinking, yawning, and drowsiness, through technica...
详细信息
Image captioning is an interdisciplinary research hotspot at the intersection of computer vision and natural language processing, representing a multimodal task that integrates core technologies from both fields. This...
详细信息
With the development of artificial intelligence, deep learning has been increasingly used to achieve automatic detection of geographic information, replacing manual interpretation and improving efficiency. However, re...
详细信息
With the development of deep learning in recent years, code representation learning techniques have become the foundation of many softwareengineering tasks such as program classification [1] and defect detection. Ear...
With the development of deep learning in recent years, code representation learning techniques have become the foundation of many softwareengineering tasks such as program classification [1] and defect detection. Earlier approaches treat the code as token sequences and use CNN, RNN, and the Transformer models to learn code representations.
Exploration strategy design is a challenging problem in reinforcement learning(RL),especially when the environment contains a large state space or sparse *** exploration,the agent tries to discover unexplored(novel)ar...
详细信息
Exploration strategy design is a challenging problem in reinforcement learning(RL),especially when the environment contains a large state space or sparse *** exploration,the agent tries to discover unexplored(novel)areas or high reward(quality)*** existing methods perform exploration by only utilizing the novelty of *** novelty and quality in the neighboring area of the current state have not been well utilized to simultaneously guide the agent’s *** address this problem,this paper proposes a novel RL framework,called clustered reinforcement learning(CRL),for efficient exploration in *** adopts clustering to divide the collected states into several clusters,based on which a bonus reward reflecting both novelty and quality in the neighboring area(cluster)of the current state is given to the *** leverages these bonus rewards to guide the agent to perform efficient ***,CRL can be combined with existing exploration strategies to improve their performance,as the bonus rewards employed by these existing exploration strategies solely capture the novelty of *** on four continuous control tasks and six hard-exploration Atari-2600 games show that our method can outperform other state-of-the-art methods to achieve the best performance.
End-to-end training has emerged as a prominent trend in speech recognition, with Conformer models effectively integrating Transformer and CNN architectures. However, their complexity and high computational cost pose d...
详细信息
Recommender systems are effective in mitigating information overload, yet the centralized storage of user data raises significant privacy concerns. Cross-user federated recommendation(CUFR) provides a promising distri...
详细信息
Recommender systems are effective in mitigating information overload, yet the centralized storage of user data raises significant privacy concerns. Cross-user federated recommendation(CUFR) provides a promising distributed paradigm to address these concerns by enabling privacy-preserving recommendations directly on user devices. In this survey, we review and categorize current progress in CUFR, focusing on four key aspects: privacy, security, accuracy, and efficiency. Firstly,we conduct an in-depth privacy analysis, discuss various cases of privacy leakage, and then review recent methods for privacy protection. Secondly, we analyze security concerns and review recent methods for untargeted and targeted *** untargeted attack methods, we categorize them into data poisoning attack methods and parameter poisoning attack methods. For targeted attack methods, we categorize them into user-based methods and item-based methods. Thirdly,we provide an overview of the federated variants of some representative methods, and then review the recent methods for improving accuracy from two categories: data heterogeneity and high-order information. Fourthly, we review recent methods for improving training efficiency from two categories: client sampling and model compression. Finally, we conclude this survey and explore some potential future research topics in CUFR.
This study examines the effectiveness of artificial intelligence techniques in generating high-quality environmental data for species introductory site selection *** Strengths,Weaknesses,Opportunities,Threats(SWOT)ana...
详细信息
This study examines the effectiveness of artificial intelligence techniques in generating high-quality environmental data for species introductory site selection *** Strengths,Weaknesses,Opportunities,Threats(SWOT)analysis data with Variation Autoencoder(VAE)and Generative AdversarialNetwork(GAN)the network framework model(SAE-GAN),is proposed for environmental data *** model combines two popular generative models,GAN and VAE,to generate features conditional on categorical data embedding after SWOT *** model is capable of generating features that resemble real feature distributions and adding sample factors to more accurately track individual sample *** data is used to retain more semantic information to generate *** model was applied to species in Southern California,USA,citing SWOT analysis data to train the *** show that the model is capable of integrating data from more comprehensive analyses than traditional methods and generating high-quality reconstructed data from them,effectively solving the problem of insufficient data collection in development *** model is further validated by the Technique for Order Preference by Similarity to an Ideal Solution(TOPSIS)classification assessment commonly used in the environmental data *** study provides a reliable and rich source of training data for species introduction site selection systems and makes a significant contribution to ecological and sustainable development.
This research proposes a novel artificial decision-marking framework suitable for modern smart sensor networks and carbon-based biosensor systems which deals with uncertainty and the peculiarity of the data. To achiev...
详细信息
This paper introduces an intelligent traffic flow prediction system that combines data twinning and deep learning, aiming to improve the prediction accuracy and model adaptability by integrating grey prediction model ...
详细信息
暂无评论