咨询与建议

限定检索结果

文献类型

  • 202 篇 会议
  • 77 篇 期刊文献

馆藏范围

  • 279 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 130 篇 工学
    • 77 篇 计算机科学与技术...
    • 67 篇 软件工程
    • 60 篇 光学工程
    • 58 篇 生物医学工程(可授...
    • 37 篇 电气工程
    • 31 篇 生物工程
    • 28 篇 电子科学与技术(可...
    • 16 篇 信息与通信工程
    • 13 篇 仪器科学与技术
    • 10 篇 控制科学与工程
    • 7 篇 机械工程
    • 6 篇 土木工程
    • 5 篇 建筑学
    • 4 篇 材料科学与工程(可...
    • 3 篇 安全科学与工程
  • 88 篇 理学
    • 46 篇 物理学
    • 35 篇 生物学
    • 32 篇 数学
    • 13 篇 统计学(可授理学、...
    • 4 篇 地球物理学
  • 31 篇 医学
    • 30 篇 临床医学
    • 27 篇 基础医学(可授医学...
    • 19 篇 药学(可授医学、理...
    • 5 篇 公共卫生与预防医...
    • 4 篇 医学技术(可授医学...
    • 3 篇 中西医结合
  • 25 篇 管理学
    • 13 篇 管理科学与工程(可...
    • 12 篇 图书情报与档案管...
    • 4 篇 工商管理
  • 6 篇 艺术学
    • 6 篇 设计学(可授艺术学...
  • 3 篇 教育学
  • 2 篇 法学

主题

  • 36 篇 image segmentati...
  • 32 篇 magnetic resonan...
  • 32 篇 computer vision
  • 31 篇 image analysis
  • 29 篇 laboratories
  • 25 篇 shape
  • 20 篇 clustering algor...
  • 19 篇 image processing
  • 18 篇 biomedical imagi...
  • 17 篇 image reconstruc...
  • 14 篇 data mining
  • 14 篇 computed tomogra...
  • 13 篇 neural networks
  • 11 篇 brain modeling
  • 11 篇 humans
  • 10 篇 cameras
  • 10 篇 algorithm design...
  • 10 篇 feature extracti...
  • 9 篇 pixel
  • 9 篇 epilepsy

机构

  • 19 篇 control and inte...
  • 10 篇 image analysis a...
  • 9 篇 radiology image ...
  • 8 篇 department of qu...
  • 8 篇 image analysis l...
  • 8 篇 computer vision ...
  • 8 篇 department of ra...
  • 8 篇 department of el...
  • 6 篇 centre for medic...
  • 6 篇 computer vision ...
  • 6 篇 computer vision ...
  • 6 篇 control and inte...
  • 6 篇 heidelberg
  • 5 篇 image analysis l...
  • 5 篇 department of co...
  • 5 篇 university of pe...
  • 5 篇 control and inte...
  • 5 篇 department of in...
  • 4 篇 electrical engin...
  • 4 篇 department of ne...

作者

  • 28 篇 hamid soltanian-...
  • 16 篇 soltanian-zadeh ...
  • 15 篇 s. mitra
  • 12 篇 h. soltanian-zad...
  • 12 篇 aly a. farag
  • 10 篇 a.a. farag
  • 9 篇 j. goutsias
  • 8 篇 bakas spyridon
  • 8 篇 kofler florian
  • 7 篇 menze bjoern
  • 7 篇 j.l. prince
  • 6 篇 kozubek michal
  • 6 篇 müller henning
  • 5 篇 rajpoot nasir
  • 5 篇 prince jerry l.
  • 5 篇 galdran adrian
  • 5 篇 reinke annika
  • 5 篇 cohen-adad julie...
  • 5 篇 glocker ben
  • 5 篇 ma jun

语言

  • 270 篇 英文
  • 8 篇 其他
  • 1 篇 中文
检索条件"机构=Computer Vision & Image Analysis Laboratory Department of Electrical Engineering"
279 条 记 录,以下是1-10 订阅
排序:
Feature Correlation Aggregation: on the Path to Better Graph Neural Networks
Feature Correlation Aggregation: on the Path to Better Graph...
收藏 引用
2023 International Conference on Digital image Computing: Techniques and Applications, DICTA 2023
作者: Zhou, Jieming Zhang, Tong Fang, Pengfei Petersson, Lars Harandi, Mehrtash Australian National University College of Engineering and Computer Science Canberra Australia Image and Visual Representation Laboratory Epfl Lausanne Switzerland Imaging and Computer Vision Group Csiro Canberra Australia Monash University Department of Electrical and Computer Systems Engineering Melbourne Australia
Prior to the introduction of Graph Neural Networks (GNNs), modelling and analyzing irregular data, particularly graphs, was thought to be the Achilles' heel of deep learning. The core concept of GNNs is to find a ... 详细信息
来源: 评论
Machine learning predicts long-term mortality after acute myocardial infarction using systolic time intervals and routinely collected clinical data
收藏 引用
Intelligent Medicine 2024年 第3期4卷 170-176页
作者: Bijan Roudini Boshra Khajehpiri Hamid Abrishami Moghaddam Mohamad Forouzanfar Department of Systems Engineering School of Advanced TechnologyUniversity of QuebecMontrealCanada Machine Vision and Medical Image Processing(MVMIP)Laboratory Faculty of Electrical and Computer EngineeringK.N.Toosi University of TechnologyTehranIran Research Center of the Montreal University Institute of Geriatrics MontrealCanada
Background Precise estimation of current and future comorbidities of patients with cardiovascular disease is an important factor in prioritizing continuous physiological monitoring and new *** learning(ML)models have ... 详细信息
来源: 评论
Dermoscopic image Classification Using Attention Mechanism and Ensemble Learning Approaches
Dermoscopic Image Classification Using Attention Mechanism a...
收藏 引用
2023 IEEE International Conference on Big Data, BigData 2023
作者: Huang, Shanchuan Lei, Hongwei Jin, Liuhan Yang, Jinzhu Jiang, Tao Yao, Yudong Grzegorzek, Marcin Li, Chen Northeastern University Microscopic Image and Medical Image Analysis Group College of Medicine and Biological Information Engineering China Northeastern University Key Laboratory of Intelligent Computing in Medical Image Ministry of Education Liaoning Shenyang China Chengdu University of Traditional Chinese Medicine School of Intelligent Medicine Chengdu China Stevens Institute of Technology Department of Electrical and Computer Engineering United States Institute of Medical Informatics University of Luebeck Luebeck Germany
Background and purpose: Skin tumours have become one of the most common diseases worldwide. While benign ones are not usually a threat to human health, malignant ones can develop into skin cancer and become life-threa... 详细信息
来源: 评论
GEM: Context-Aware Gaze EstiMation with Visual Search Behavior Matching for Chest Radiograph
arXiv
收藏 引用
arXiv 2024年
作者: Liu, Shaonan Chen, Wenting Liu, Jie Luo, Xiaoling Shen, Linlin Computer Vision Institute College of Computer Science and Software Engineering Shenzhen University China Department of Electrical Engineering City University of Hong Kong Hong Kong AI Research Center for Medical Image Analysis and Diagnosis Shenzhen University China Guangdong Provincial Key Laboratory of Intelligent Information Processing China
Gaze estimation is pivotal in human scene comprehension tasks, particularly in medical diagnostic analysis. Eye-tracking technology facilitates the recording of physicians’ ocular movements during image interpretatio... 详细信息
来源: 评论
Bi-Directional MS Lesion Filling and Synthesis Using Denoising Diffusion Implicit Model-based Lesion Repainting
arXiv
收藏 引用
arXiv 2024年
作者: Zhang, Jinwei Zuo, Lianrui Liu, Yihao Remedios, Samuel Landman, Bennett A. Prince, Jerry L. Carass, Aaron Image Analysis and Communications Laboratory Department of Electrical and Computer Engineering Johns Hopkins University BaltimoreMD21218 United States Department of Electrical and Computer Engineering Vanderbilt University NashvilleTN37235 United States Department of Computer Science Johns Hopkins University BaltimoreMD21218 United States
Automatic magnetic resonance (MR) image processing pipelines are widely used to study people with multiple sclerosis (PwMS), encompassing tasks such as lesion segmentation and brain parcellation. However, the presence... 详细信息
来源: 评论
Unsupervised learning of spatially varying regularization for diffeomorphic image registration
arXiv
收藏 引用
arXiv 2024年
作者: Chen, Junyu Wei, Shuwen Liu, Yihao Bian, Zhangxing He, Yufan Carass, Aaron Bai, Harrison Du, Yong Department of Radiology and Radiological Science Johns Hopkins School of Medicine MD United States Image Analysis and Communications Laboratory Department of Electrical and Computer Engineering Johns Hopkins University MD United States Department of Electrical and Computer Engineering Vanderbilt University TN United States NVIDIA Corporation BethesdaMD United States
Spatially varying regularization accommodates the deformation variations that may be necessary for different anatomical regions during deformable image registration. Historically, optimization-based registration model... 详细信息
来源: 评论
ISGAN: Unsupervised Domain Adaptation With Improved Symmetric GAN for Cross-Modality Multi-Organ Segmentation
收藏 引用
IEEE Journal of Biomedical and Health Informatics 2024年 第6期29卷 3874-3885页
作者: Jiapeng Li Yifan Zhang Lisheng Xu Yudong Yao Lin Qi College of Medicine and Biological Information Engineering Northeastern University Shenyang China Engineering Research Center of Medical Imaging and Intelligent Analysis Ministry of Education Shenyang China Key Laboratory of Medical Image Computing Ministry of Education Northeastern University Shenyang China Department of Electrical and Computer Engineering Stevens Institute of Technology Hoboken NJ USA
The differences between cross-modality medical images are significant, so several studies are working on unsupervised domain adaptation (UDA) segmentation, which aims to adapt a segmentation model trained on a labeled... 详细信息
来源: 评论
Beyond MR image Harmonization: Resolution Matters Too
arXiv
收藏 引用
arXiv 2024年
作者: Hays, Savannah P. Remedios, Samuel W. Zuo, Lianrui Mowry, Ellen M. Newsome, Scott D. Calabresi, Peter A. Carass, Aaron Dewey, Blake E. Prince, Jerry L. Image Analysis and Communications Laboratory Department of Electrical and Computer Engineering Johns Hopkins University BaltimoreMD21218 United States Department of Computer Science Johns Hopkins University BaltimoreMD21218 United States Department of Electrical and Computer Engineering Vanderbilt University NashvilleTN37235 United States Department of Neurology Johns Hopkins School of Medicine BaltimoreMD21287 United States
Magnetic resonance (MR) imaging is commonly used in the clinical setting to non-invasively monitor the body. There exists a large variability in MR imaging due to differences in scanner hardware, software, and protoco... 详细信息
来源: 评论
Feature Correlation Aggregation: on the Path to Better Graph Neural Networks
Feature Correlation Aggregation: on the Path to Better Graph...
收藏 引用
Proceedings of the Digital image Computing: Technqiues and Applications (DICTA)
作者: Jieming Zhou Tong Zhang Pengfei Fang Lars Petersson Mehrtash Harandi College of Engineering and Computer Science Australian National University Canberra Australia Image and Visual Representation Laboratory EPFL Lausanne Switzerland Imaging and Computer Vision Group CSIRO Canberra Australia Department of Electrical and Computer Systems Engineering Monash University Melbourne Australia
Prior to the introduction of Graph Neural Networks (GNNs), modelling and analyzing irregular data, particularly graphs, was thought to be the Achilles’ heel of deep learning. The core concept of GNNs is to find a rep...
来源: 评论
Counterfactual Data Augmentation with Denoising Diffusion for Graph Anomaly Detection
arXiv
收藏 引用
arXiv 2024年
作者: Xiao, Chunjing Pang, Shikang Xu, Xovee Li, Xuan Trajcevski, Goce Zhou, Fan The School of Computer and Information Engineering Henan University China The Henan Key Laboratory of Big Data Analysis and Processing Henan University Kaifeng475004 China The University of Electronic Science and Technology of China Sichuan Chengdu610054 China The National Key Laboratory of Fundamental Science on Synthetic Vision Sichuan University Chengdu610065 China The Department of Electrical and Computer Engineering Iowa State University AmesIA50011 United States
A critical aspect of Graph Neural Networks (GNNs) is to enhance the node representations by aggregating node neighborhood information. However, when detecting anomalies, the representations of abnormal nodes are prone... 详细信息
来源: 评论