咨询与建议

限定检索结果

文献类型

  • 676 篇 会议
  • 230 篇 期刊文献
  • 7 册 图书

馆藏范围

  • 913 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 421 篇 工学
    • 258 篇 计算机科学与技术...
    • 223 篇 软件工程
    • 132 篇 光学工程
    • 102 篇 电气工程
    • 100 篇 生物医学工程(可授...
    • 83 篇 信息与通信工程
    • 66 篇 电子科学与技术(可...
    • 66 篇 生物工程
    • 37 篇 控制科学与工程
    • 32 篇 机械工程
    • 30 篇 仪器科学与技术
    • 18 篇 化学工程与技术
    • 13 篇 土木工程
    • 12 篇 材料科学与工程(可...
    • 11 篇 建筑学
    • 9 篇 安全科学与工程
    • 8 篇 航空宇航科学与技...
  • 277 篇 理学
    • 133 篇 物理学
    • 125 篇 数学
    • 79 篇 生物学
    • 55 篇 统计学(可授理学、...
    • 19 篇 化学
    • 10 篇 系统科学
  • 74 篇 管理学
    • 41 篇 管理科学与工程(可...
    • 37 篇 图书情报与档案管...
    • 15 篇 工商管理
  • 67 篇 医学
    • 61 篇 临床医学
    • 48 篇 基础医学(可授医学...
    • 32 篇 药学(可授医学、理...
    • 9 篇 公共卫生与预防医...
  • 9 篇 艺术学
  • 7 篇 农学
  • 5 篇 教育学
  • 4 篇 法学
  • 1 篇 经济学

主题

  • 137 篇 computer vision
  • 117 篇 laboratories
  • 106 篇 image segmentati...
  • 84 篇 image analysis
  • 63 篇 image processing
  • 54 篇 feature extracti...
  • 53 篇 magnetic resonan...
  • 53 篇 shape
  • 48 篇 cameras
  • 47 篇 pixel
  • 45 篇 image reconstruc...
  • 38 篇 humans
  • 38 篇 layout
  • 35 篇 image edge detec...
  • 34 篇 machine vision
  • 34 篇 biomedical imagi...
  • 33 篇 data mining
  • 33 篇 algorithm design...
  • 32 篇 robustness
  • 32 篇 principal compon...

机构

  • 19 篇 control and inte...
  • 12 篇 department of el...
  • 10 篇 computer vision ...
  • 10 篇 remote sensing s...
  • 10 篇 computer vision ...
  • 10 篇 image analysis a...
  • 10 篇 remote sensing s...
  • 9 篇 radiology image ...
  • 9 篇 department of ra...
  • 9 篇 department of ra...
  • 9 篇 computational in...
  • 8 篇 remote sensing s...
  • 8 篇 centre for medic...
  • 8 篇 department of qu...
  • 8 篇 image analysis l...
  • 8 篇 computer vision ...
  • 8 篇 department of el...
  • 8 篇 laboratory for v...
  • 7 篇 computer vision ...
  • 7 篇 computer vision ...

作者

  • 29 篇 hamid soltanian-...
  • 20 篇 chein-i chang
  • 18 篇 a.c. bovik
  • 17 篇 soltanian-zadeh ...
  • 15 篇 s. mitra
  • 14 篇 h. knutsson
  • 14 篇 aly a. farag
  • 13 篇 timofte radu
  • 13 篇 a.a. farag
  • 13 篇 chang chein-i
  • 12 篇 m.m. trivedi
  • 12 篇 h. soltanian-zad...
  • 11 篇 chang chein-i.
  • 9 篇 bakas spyridon
  • 9 篇 j. goutsias
  • 9 篇 felsberg michael
  • 9 篇 e.j. delp
  • 8 篇 kofler florian
  • 8 篇 d. poussart
  • 8 篇 menze bjoern

语言

  • 875 篇 英文
  • 37 篇 其他
  • 1 篇 中文
检索条件"机构=Computer Vision & Image Analysis Laboratory Department of Electrical and Computer Engineering"
913 条 记 录,以下是181-190 订阅
排序:
Morphologically Decoupled Structured Sparsity for Rotation-Invariant Hyperspectral image analysis
Morphologically Decoupled Structured Sparsity for Rotation-I...
收藏 引用
作者: Prasad, Saurabh Labate, Demetrio Cui, Minshan Zhang, Yuhang Hyperspectral Image Analysis Laboratory Department of Electrical and Computer Engineering University of Houston HoustonTX77004 United States Department of Mathematics University of Houston HoustonTX77004 United States
Hyperspectral imagery has emerged as a popular sensing modality for a variety of applications, and sparsity-based methods were shown to be very effective to deal with challenges coming from high dimensionality in most... 详细信息
来源: 评论
Propagating Confidences through CNNs for Sparse Data Regression
arXiv
收藏 引用
arXiv 2018年
作者: Eldesokey, Abdelrahman Felsberg, Michael Khan, Fahad Shahbaz Computer Vision Laboratory Department of Electrical Engineering Linköping University Linköping Sweden Inception Institute of Artificial Intelligence Abu Dhabi United Arab Emirates
In most computer vision applications, convolutional neural networks (CNNs) operate on dense image data generated by ordinary cameras. Designing CNNs for sparse and irregularly spaced input data is still an open proble... 详细信息
来源: 评论
NTIRE 2020 Challenge on Real-World image Super-Resolution: Methods and Results
arXiv
收藏 引用
arXiv 2020年
作者: Lugmayr, Andreas Danelljan, Martin Timofte, Radu Ahn, Namhyuk Bai, Dongwoon Cai, Jie Cao, Yun Chen, Junyang Cheng, Kaihua Chun, SeYoung Deng, Wei El-Khamy, Mostafa Man Ho, Chiu Ji, Xiaozhong Kheradmand, Amin Kim, Gwantae Ko, Hanseok Lee, Kanghyu Lee, Jungwon Li, Hao Liu, Ziluan Liu, Zhi-Song Liu, Shuai Lu, Yunhua Meng, Zibo Navarrete Michelini, Pablo Micheloni, Christian Prajapati, Kalpesh Ren, Haoyu Hyeok Seo, Yong Siu, Wan-Chi Sohn, Kyung-Ah Tai, Ying Muhammad Umer, Rao Wang, Shuangquan Wang, Huibing Haoning Wu, Timothy Wu, Haoning Yang, Biao Yang, Fuzhi Yoo, Jaejun Zhao, Tongtong Zhou, Yuanbo Zhuo, Haijie Zong, Ziyao Zou, Xueyi Wang, Li-Wen Cani, Marie-Paule Siu, Wan-Chi Yang, Huan Fu, Jianlong Shi, Yukai Chen, Junyang Lee, Kanghyu Park, Jaihyun Lee, Junyeop Min, Jeongki Lee, Bokyeung Ko, Hanseok Yoo, Jaejun Sohn, Kyung-Ah Micheloni, Christian Hu, Fengshuo Wang, Yanhong Lu, Yunhua Peng, Jinjia Wang, Huibing Zhuo, Haijie Lee, Junyeop Min, Jeongki Lee, Bokyeung Park, Jaihyun Ko, Hanseok Tai, Lab Ying Jilin Li, Youtu Lab Liu, Shuai Yang, Biao Liu, Xing Chen, Shuaijun Zhao, Lei Wang, Zhan Lin, Yuxuan Jia, Xu Gao, Qinquan Deng, Wei Kheradmand, Amin El-Khamy, Mostafa Wang, Shuangquan Bai, Dongwoon Lee, Jungwon Patel, Heena Chudasama, Vishal Upla, Kishor Ramachandra, Raghavendra Raja, Kiran Busch, Christoph Meng, Zibo Ho, Chiu Man Computer Vision Lab ETH Zurich Switzerland LIX - Computer science laboratory at the cole polytechnique Palaiseau France Center of Multimedia Signal Processing Hong Kong Polytechnic University Hong Kong Shanghai Jiao Tong University China Microsoft Research Beijing China Guangdong University of Technology China Intelligent Signal Processing Laboratory Korea University Korea Republic of Ajou University Korea Republic of EPFL University of Udine Italy BOE Technology Group Co. Ltd Dalian Maritime University China Guangdong OPPO Mobile Telecommunications Corp. Ltd Department of Video Information Processing Korea University Korea Republic of School of Electrical Engineering Korea University Korea Republic of Tencent Youtu Lab Yun Cao Tencent Youtu Tencent Youtu Lab Chengjie Wang Tencent Tencent Youtu Lab Feiyue Huang Tencent Youtu Lab Peking University China North China University of Technology China Huawei Technologies Co. Ltd China Fuzhou University Tong Tong Fuzhou University Imperial Vision Technology China Fuzhou University Imperial Vision Technology China Imperial Vision Technology SOC R&D Samsung Semiconductor Inc. United States Ulsan national institute of science and technology Korea Republic of Sardar Vallabhbhai National Institute Of Technology Surat India Norwegian University of Science and Technology Gjøvik Norway InnoPeak Technology
This paper reviews the NTIRE 2020 challenge on real world super-resolution. It focuses on the participating methods and final results. The challenge addresses the real world setting, where paired true high and low-res... 详细信息
来源: 评论
A Generative Appearance Model for End-to-end Video Object Segmentation
arXiv
收藏 引用
arXiv 2018年
作者: Johnander, Joakim Danelljan, Martin Brissman, Emil Khan, Fahad Shahbaz Felsberg, Michael Computer Vision Laboratory Department of Electrical Engineering Linköping University Inception Institute of Artificial Intelligence Abu Dhabi United Arab Emirates Saab Sweden Zenuity Sweden
One of the fundamental challenges in video object segmentation is to find an effective representation of the target and background appearance. The best performing approaches resort to extensive fine-tuning of a convol... 详细信息
来源: 评论
Morphological geodesic active contour based automatic aorta segmentation in thoracic CT images
Morphological geodesic active contour based automatic aorta ...
收藏 引用
International Conference on computer vision and image Processing, CVIP 2016
作者: Dasgupta, Avijit Mukhopadhyay, Sudipta Mehre, Shrikant A. Bhattacharyya, Parthasarathi Computer Vision and Image Processing Laboratory Department of Electronics and Electrical Communication Engineering Indian Institute of Technology Kharagpur West Bengal721302 India Institute of Pulmocare & Research KolkataWest Bengal700156 India
Automatic aorta segmentation and quantification in thoracic computed tomography (CT) images is important for detection and prevention of aortic diseases. This paper proposes an automatic aorta segmentation algorithm i... 详细信息
来源: 评论
Mineral Detection of Neutrinos and Dark Matter. A Whitepaper
arXiv
收藏 引用
arXiv 2023年
作者: Baum, Sebastian Stengel, Patrick Abe, Natsue Acevedo, Javier F. Araujo, Gabriela R. Asahara, Yoshihiro Avignone, Frank Balogh, Levente Baudis, Laura Boukhtouchen, Yilda Bramante, Joseph Breur, Pieter Alexander Caccianiga, Lorenzo Capozzi, Francesco Collar, Juan I. Ebadi, Reza Edwards, Thomas Eitel, Klaus Elykov, Alexey Ewing, Rodney C. Freese, Katherine Fung, Audrey Galelli, Claudio Glasmacher, Ulrich A. Gleason, Arianna Hasebe, Noriko Hirose, Shigenobu Horiuchi, Shunsaku Hoshino, Yasushi Huber, Patrick Ido, Yuki Igami, Yohei Ishikawa, Norito Itow, Yoshitaka Kamiyama, Takashi Kato, Takenori Kavanagh, Bradley J. Kawamura, Yoji Kazama, Shingo Kenney, Christopher J. Kilminster, Ben Kouketsu, Yui Kozaka, Yukiko Kurinsky, Noah A. Leybourne, Matthew Lucas, Thalles McDonough, William F. Marshall, Mason C. Mateos, Jose Maria Mathur, Anubhav Michibayashi, Katsuyoshi Mkhonto, Sharlotte Murase, Kohta Naka, Tatsuhiro Oguni, Kenji Rajendran, Surjeet Sakane, Hitoshi Sala, Paola Scholberg, Kate Semenec, Ingrida Shiraishi, Takuya Spitz, Joshua Sun, Kai Suzuki, Katsuhiko Tanin, Erwin H. Vincent, Aaron Vladimirov, Nikita Walsworth, Ronald L. Watanabe, Hiroko Stanford Institute for Theoretical Physics Department of Physics Stanford University StanfordCA94305 United States Istituto Nazionale di Fisica Nucleare Sezione di Ferrara via Giuseppe Saragat 1 FerraraI-44122 Italy Kanagawa Yokohama236-0001 Japan SLAC National Accelerator Laboratory Stanford University 2575 Sand Hill Road Menlo ParkCA94025 United States Department of Physics University of Zurich Winterthurerstrasse 190 ZurichCH-8057 Switzerland Department of Earth and Environmental Sciences Graduate School of Environmental Studies Nagoya University Furo-cho Chikusa-ku Nagoya464-8601 Japan Department of Physics and Astronomy University of South Carolina ColumbiaSC29208 United States Mechanical and Materials Engineering Queen’s University 130 Stuart Street KingstonONK7L 2V9 Canada Department of Physics Engineering Physics and Astronomy Queen’s University 64 Bader Lane KingstonONK7L 2S8 Canada Perimeter Institute for Theoretical Physics WaterlooONN2J 2W9 Canada Istituto Nazionale di Fisica Nucleare Sezione di Milano Via Celoria 16 Milan Italy Dipartimento di Scienze Fisiche e Chimiche Università degli Studi dell’Aquila L’Aquila67100 Italy Department of Physics University of Chicago ChicagoIL60637 United States Department of Physics University of Maryland College ParkMD20742 United States Quantum Technology Center University of Maryland College ParkMD20742 United States The William H. Miller III Department of Physics and Astronomy The Johns Hopkins University BaltimoreMD21218 United States Institute for Astroparticle Physics Karlsruhe Institute of Technology Karlsruhe76021 Germany Earth and Planetary Sciences Stanford University StanfordCA94305-2115 United States Texas Center for Cosmology and Astroparticle Physics Weinberg Institute for Theoretical Physics Department of Physics The University of Texas at Austin AustinTX78712 United States The Oskar Klein Centre Department of Physics Stockholm University AlbaNova
Minerals are solid state nuclear track detectors – nuclear recoils in a mineral leave latent damage to the crystal structure. Depending on the mineral and its temperature, the damage features are retained in the mate... 详细信息
来源: 评论
The Brain Tumor Segmentation (BraTS-METS) Challenge 2023: Brain Metastasis Segmentation on Pre-treatment MRI
arXiv
收藏 引用
arXiv 2023年
作者: Moawad, Ahmed W. Janas, Anastasia Baid, Ujjwal Ramakrishnan, Divya Saluja, Rachit Ashraf, Nader Jekel, Leon Amiruddin, Raisa Adewole, Maruf Albrecht, Jake Anazodo, Udunna Aneja, Sanjay Anwar, Syed Muhammad Bergquist, Timothy Calabrese, Evan Chiang, Veronica Chung, Verena Conte, Gian Marco Marco Dako, Farouk Eddy, James Ezhov, Ivan Familiar, Ariana Farahani, Keyvan Iglesias, Juan Eugenio Jiang, Zhifan Johanson, Elaine Kazerooni, Anahita Fathi Kofler, Florian Krantchev, Kiril LaBella, Dominic Van Leemput, Koen Li, Hongwei Bran Linguraru, Marius George Link, Katherine E. Liu, Xinyang Maleki, Nazanin Meier, Zeke Menze, Bjoern H. Moy, Harrison Osenberg, Klara Piraud, Marie Reitman, Zachary Shinohara, Russel Takeshi Tahon, Nourel hoda Nada, Ayman Velichko, Yuri S. Wang, Chunhao Wiestler, Benedikt Wiggins, Walter Shafique, Umber Willms, Klara Avesta, Arman Bousabarah, Khaled Chakrabarty, Satrajit Gennaro, Nicolo Holler, Wolfgang Kaur, Manpreet LaMontagne, Pamela Lin, MingDe Lost, Jan Marcus, Daniel S. Maresca, Ryan Merkaj, Sarah Nada, Ayaman Pedersen, Gabriel Cassinelli von Reppert, Marc Sotiras, Aristeidis Teytelboym, Oleg Tillmans, Niklas Westerhoff, Malte Youssef, Ayda Godfrey, Devon Floyd, Scott Rauschecker, Andreas Villanueva-Meyer, Javier Pflüger, Irada Cho, Jaeyoung Bendszus, Martin Brugnara, Gianluca Cramer, Justin Perez-Carillo, Gloria Guzman J. Johnson, Derek R. Kam, Anthony Kwan, Benjamin Yin Ming Lai, Lillian Lall, Neil U. Memon, Fatima Patro, Satya Narayana Petrovic, Bojan So, Tiffany Y. Thompson, Gerard Wu, Lei Schrickel, E. Brooke Bansal, Anu Barkhof, Frederik Besada, Cristina Chu, Sammy Druzgal, Jason Dusoi, Alexandru Farage, Luciano Feltrin, Fabricio Fong, Amy Fung, Steve H. Gray, R. Ian Ikuta, Ichiro Iv, Michael Postma, Alida A. Mahajan, Amit Joyner, David Krumpelman, Chase Letourneau-Guillon, Laurent Lincoln, Christie M. Maros, Mate E. Miller, Elka Morón, Fanny Nimchinsky, Esther A. Ozsarlak, Ozkan Patel, Uresh Rohatgi, Saurabh Saha, Atin Sayah, Anousheh Schwartz, Eric D. Shih, Robert Shiroishi, Mark Trinity health Mid Atlantic Hosiptals DarbyPA United States Department of Radiology and Biomedical Imaging Yale School of Medicine New HavenCT United States Division of Computational Pathology Department of Pathology and Laboratory Medicine School of Medicine Indiana University IndianapolisIN United States Department of Electical and Computer Engineering Cornell University Cornell Tech New YorkNY United States Department of Radiology Weill Cornell Medicine New YorkNY United States ImagineQuant Children’s Hospital of Philadelphia PhiladelphiaPA United States College of Medicine Alfaisal University Riyadh Saudi Arabia DKFZ Division of Translational Neurooncology The WTZ German Cancer Consortium DKTK Partner Site University Hospital Essen Essen Germany Medical Artificial Intelligence Lab Crestview Radiology Lagos Nigeria Sage Bionetworks SeattleWA United States Montreal Neurological Institute McGill University Montreal Canada lab Crestview Radiology Lagos Nigeria Department of Therapeutic Radiology Yale School of Medicine New HavenCT United States Sheikh Zayed Institute for Pediatric Surgical Innovation Children’s National Hospital WashingtonDC United States Department of Radiology Mayo Clinic RochesterMN United States Department of Radiology Duke University Medical Center DurhamNC United States Department of Neurosurgery Yale School of Medicine New HavenCT United States Center for Global Health Perelman School of Medicine University of Pennsylvania PA United States Department of Informatics Technical University Munich Germany Children’s Hospital of Philadelphia University of Pennsylvania PhiladelphiaPA United States Cancer Imaging Program National Cancer Institute National Institutes of Health BethesdaMD United States Athinoula A. Martinos Center for Biomedical Imaging Massachusetts General Hospital BostonMA United States Children’s National Hospital WashingtonDC United States PrecisionFDA U.S. Food and Drug Administration S
The translation of AI-generated brain metastases (BM) segmentation into clinical practice relies heavily on diverse, high-quality annotated medical imaging datasets. The BraTS-METS 2023 challenge has gained momentum f... 详细信息
来源: 评论
LaG-DESIQUE: A local-and-global blind image quality evaluator without training on human opinion scores  6th
LaG-DESIQUE: A local-and-global blind image quality evaluato...
收藏 引用
6th CCF Academic Conference on Big Data, CCF Big Data 2018
作者: Liu, Ruyi Zhang, Yi Chandler, Damon M. Miao, Qiguang Liu, Tiange School of Computer Science and Technology Xidian University XianShaanxi710071 China Xian Key Laboratory of Big Data and Intelligent Vision XianShaanxi710071 China School of Electronic and Information Engineering Xian Jiaotong University XianShaanxi710049 China Department of Electrical and Electronic Engineering Shizuoka University HamamatsuShizuoka432-8561 Japan School of Information Science and Engingeering Yanshan University QinhuangdaoHebei066004 China
This paper extends our previous DESIQUE [1] algorithm to a local-and-global way (LaG-DESIQUE) to blindly measure image quality without training on human opinion scores. The local DESIQUE extracts block-based log-deriv... 详细信息
来源: 评论
Person Re-identification by Integrating Static Texture and Shape Cues  12th
Person Re-identification by Integrating Static Texture and S...
收藏 引用
12th Chinese Conference on Biometric Recognition, CCBR 2017
作者: Madongo, Canaan Tinotenda Huang, Di Chen, Jiaxin Laboratory of Intelligent Recognition and Image Processing School of Computer Science and Engineering Beihang University Beijing100191 China Department of Electrical and Computer Engineering New York University Abu Dhabi Abu Dhabi United Arab Emirates
Person Re-Identification (Re-ID) is a challenging task with wide ranging applications in various fields. This paper presents a novel hand-crafted method for this issue, enhancing the state of the art ones in literatur... 详细信息
来源: 评论
Injecting and removing malignant features in mammography with CycleGAN: Investigation of an automated adversarial attack using neural networks
arXiv
收藏 引用
arXiv 2018年
作者: Becker, Anton S. Jendele, Lukas Skopek, Ondrej Berger, Nicole Ghafoor, Soleen Marcon, Magda Konukoglu, Ender Institute of Diagnostic and Interventional Radiology University Hospital of Zurich Department of Health Sciences and Technology ETH Zurich Department of Computer Science ETH Zurich Department of Radiology Memorial Sloan Kettering Cancer Center New York City United States Computer Vision Laboratory Department of Information Technology and Electrical Engineering ETH Zurich
Purpose To train a cycle-consistent generative adversarial network (CycleGAN) on mammographic data to inject or remove features of malignancy, and to determine whether these AI-mediated attacks can be detected by radi... 详细信息
来源: 评论