咨询与建议

限定检索结果

文献类型

  • 344 篇 会议
  • 83 篇 期刊文献
  • 4 册 图书

馆藏范围

  • 431 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 247 篇 工学
    • 158 篇 计算机科学与技术...
    • 130 篇 软件工程
    • 59 篇 信息与通信工程
    • 44 篇 机械工程
    • 43 篇 生物工程
    • 38 篇 控制科学与工程
    • 30 篇 生物医学工程(可授...
    • 21 篇 仪器科学与技术
    • 21 篇 化学工程与技术
    • 19 篇 光学工程
    • 12 篇 电气工程
    • 8 篇 电子科学与技术(可...
    • 5 篇 交通运输工程
    • 4 篇 水利工程
    • 3 篇 土木工程
  • 126 篇 理学
    • 59 篇 数学
    • 43 篇 生物学
    • 35 篇 物理学
    • 22 篇 化学
    • 17 篇 统计学(可授理学、...
    • 3 篇 系统科学
  • 71 篇 管理学
    • 50 篇 图书情报与档案管...
    • 24 篇 管理科学与工程(可...
    • 11 篇 工商管理
  • 16 篇 艺术学
    • 16 篇 设计学(可授艺术学...
  • 11 篇 医学
    • 11 篇 临床医学
    • 9 篇 基础医学(可授医学...
    • 8 篇 药学(可授医学、理...
  • 4 篇 经济学
    • 4 篇 应用经济学
  • 3 篇 法学
    • 3 篇 社会学
  • 2 篇 文学
  • 1 篇 教育学
  • 1 篇 农学

主题

  • 80 篇 feature extracti...
  • 78 篇 pattern recognit...
  • 64 篇 image segmentati...
  • 64 篇 handwriting reco...
  • 60 篇 character recogn...
  • 55 篇 support vector m...
  • 53 篇 computer vision
  • 42 篇 optical characte...
  • 39 篇 training
  • 33 篇 accuracy
  • 32 篇 shape
  • 26 篇 writing
  • 25 篇 histograms
  • 24 篇 testing
  • 22 篇 databases
  • 21 篇 text recognition
  • 20 篇 image edge detec...
  • 17 篇 reservoirs
  • 15 篇 image recognitio...
  • 14 篇 automation

机构

  • 206 篇 computer vision ...
  • 43 篇 computer vision ...
  • 31 篇 national key lab...
  • 28 篇 faculty of compu...
  • 18 篇 department of st...
  • 17 篇 computer vision ...
  • 17 篇 computer vision ...
  • 13 篇 school of comput...
  • 12 篇 computer vision ...
  • 12 篇 indian statistic...
  • 8 篇 graduate school ...
  • 8 篇 idetic universit...
  • 8 篇 institute for in...
  • 7 篇 department of st...
  • 7 篇 school of inform...
  • 6 篇 computer vision ...
  • 6 篇 computer vision ...
  • 6 篇 the computer vis...
  • 5 篇 institute for in...
  • 5 篇 computer vision ...

作者

  • 110 篇 umapada pal
  • 104 篇 pal umapada
  • 39 篇 b.b. chaudhuri
  • 32 篇 michael blumenst...
  • 30 篇 palaiahnakote sh...
  • 29 篇 blumenstein mich...
  • 27 篇 shivakumara pala...
  • 26 篇 chaudhuri b.b.
  • 24 篇 u. pal
  • 18 篇 lu tong
  • 17 篇 tong lu
  • 16 篇 chanda sukalpa
  • 14 篇 chaudhuri bidyut...
  • 13 篇 fumitaka kimura
  • 13 篇 garain utpal
  • 13 篇 bidyut b. chaudh...
  • 13 篇 p. nagabhushan
  • 12 篇 utpal garain
  • 12 篇 sukalpa chanda
  • 12 篇 alireza alaei

语言

  • 425 篇 英文
  • 6 篇 其他
检索条件"机构=Computer Vision & Pattern Recognition Unit"
431 条 记 录,以下是11-20 订阅
排序:
RDMMLND: A New Robust Deep Model for Multiple License Plate Number Detection in Video  3rd
RDMMLND: A New Robust Deep Model for Multiple License Plate ...
收藏 引用
3rd International Conference on pattern recognition and Artificial Intelligence, ICPRAI 2022
作者: Kumar, Amish Shivakumara, Palaiahnakote Pal, Umapada Computer Vision and Pattern Recognition Unit Indian Statistical Institute Kolkata India Faculty of Computer Science and Information Technology University of Malaya Kuala Lumpur Malaysia
Accurate multiple license plate detection without affecting speed, occlusion, low contrast and resolution, uneven illumination effect and poor quality is an open challenge. This study presents a new Robust Deep Model ... 详细信息
来源: 评论
A New Transformer-Based Approach for Text Detection in Shaky and Non-shaky Day-Night Video  1
收藏 引用
7th Asian Conference on pattern recognition, ACPR 2023
作者: Halder, Arnab Shivakumara, Palaiahnakote Pal, Umapada Lu, Tong Blumenstein, Michael Computer Vision and Pattern Recognition Unit Indian Statistical Institute Kolkata India Faculty of Computer Science and Information Technology University of Malaya Kula Lumpur Malaysia Nanjing University Nanjing China University of Technology Sydney Sydney Australia
Text detection in shaky and non-shaky videos is challenging because of variations caused by day and night videos. In addition, moving objects, vehicles, and humans in the video make the text detection problems more ch... 详细信息
来源: 评论
A New StyleGAN Latent Space Based Model for Image Style Transfer  27th
A New StyleGAN Latent Space Based Model for Image Style Tran...
收藏 引用
27th International Conference on pattern recognition, ICPR 2024
作者: Dey, Rakesh Palaiahnakote, Shivakumara Bhattacharya, Saumik Chanda, Sukalpa Pal, Umapada Computer Vision and Pattern Recognition Unit Indian Statistical Institute Kolkata Baranagar India School of Science Engineering and Environment University of Salford Salford United Kingdom Department of Electrical and Electronics Communication IIT-Kharagpur Kharagpur India Østfold University College Halden Norway
Cross-domain image style transfer task is an attractive topic for several applications, such as image-to-image style transfer, text-to-image style transfer, artistic image generation, etc. In cross-domain image style ... 详细信息
来源: 评论
Diving into the Depths of Spotting Text in Multi-Domain Noisy Scenes
Diving into the Depths of Spotting Text in Multi-Domain Nois...
收藏 引用
IEEE International Conference on Robotics and Automation (ICRA)
作者: Alloy Das Sanket Biswas Umapada Pal Josep Lladós Computer Vision and Pattern Recognition Unit Indian Statistical Institute Kolkata India Computer Science Department Computer Vision Center Universitat Autónoma de Barcelona Barcelona Spain
When used in a real-world noisy environment, the capacity to generalize to multiple domains is essential for any autonomous scene text spotting system. However, existing state-of-the-art methods employ pretraining and... 详细信息
来源: 评论
A New Lightweight Attention-Based Model for Emotion recognition on Distorted Social Media Face Images  1
收藏 引用
7th Asian Conference on pattern recognition, ACPR 2023
作者: Roy, Ayush Shivakumara, Palaiahnakote Pal, Umapada Gornale, Shivanand S. Liu, Cheng-Lin Computer Vision and Pattern Recognition Unit Indian Statistical Institute Kolkata India Faculty of Computer Science and Information Technology University of Malaya Kula Lumpur Malaysia Department of Computer Science Rani Channamma University Belagavi India Institute of Automation of Chinese Academy of Sciences Beijing China
The recognition of human emotions remains a challenging task for social media images. This is due to distortions created by different social media conflict with the minute changes in facial expression. This study pres... 详细信息
来源: 评论
PulmoNetX: A Hybrid vision Transformer Approach for Multi-scale Spatial Feature Reduction in Pneumonia Classification  27th
PulmoNetX: A Hybrid Vision Transformer Approach for Multi-sc...
收藏 引用
27th International Conference on pattern recognition, ICPR 2024
作者: Lasker, Asifuzzaman Ghosh, Mridul Obaidullah, Sk Md Chakraborty, Chandan Roy, Kaushik Pal, Umapada Department of Computer Science and Engineering Aliah University Kolkata700160 India Department of Computer Science Shyampur Siddheswari Mahavidyalaya Howrah711312 India Department of Computer Science and Engineering National Institute of Technical Teachers’ Training and Research Kolkata700106 India Department of Computer Science West Bengal State University Barasat700126 India Computer Vision and Pattern Recognition Unit Indian Statistical Institute Kolkata India
An innovative deep learning structure, PulmoNetX, integrates the capabilities of Convolutional Neural Networks (CNNs) and vision Transformers (ViTs) to enhance pneumonia detection in chest X-ray imagery. During prepro... 详细信息
来源: 评论
DITS: A New Domain Independent Text Spotter  27th
DITS: A New Domain Independent Text Spotter
收藏 引用
27th International Conference on pattern recognition, ICPR 2024
作者: Purkayastha, Kunal Sarkar, Shashwat Shivakumara, Palaiahnakote Pal, Umapada Ghosal, Palash Wu, Xiao-Jun Computer Vision and Pattern Recognition Unit Indian Statistical Institute Kolkata Baranagar India School of Science Engineering and Environment University of Salford Manchester United Kingdom Department of Information Technology Sikkim Manipal Institute of Technology Sikkim Manipal University Sikkim Gangtok India Jiangnan University Wuxi China
Text spotting in diverse domains, such as drone-captured images, underwater scenes, and natural scene images, presents unique challenges due to variations in image quality, contrast, text appearance, background comple... 详细信息
来源: 评论
Compound attention embedded dual channel encoder-decoder for ms lesion segmentation from brain MRI
收藏 引用
Multimedia Tools and Applications 2024年 1-33页
作者: Ghosal, Palash Roy, Abhijit Agarwal, Rohit Purkayastha, Kunal Sharma, Aaditya Lochan Kumar, Amish Department of Information Technology Sikkim Manipal Institute of Technology Sikkim Manipal University Majhitar Sikkim Rangpo737136 India Department of Computer Science and Engineering National Institute of Technology West Bengal Durgapur713209 India Department of Computer Science and Engineering Sikkim Manipal Institute of Technology Sikkim Manipal University Majhitar Sikkim Rangpo737136 India Computer Vision and Pattern Recognition Unit Indian Statistical Institute West Bengal Kolkata700108 India
Multiple Sclerosis (MS) lesions’ segmentation is difficult due to their variegated sizes, shapes, and intensity levels. Besides this, the class imbalance problem and the availability of limited annotated data samples...
来源: 评论
BYOLMED3D: SELF-SUPERVISED REPRESENTATION LEARNING OF MEDICAL VIDEOS USING GRADIENT ACCUMULATION ASSISTED 3D BYOL FRAMEWORK
arXiv
收藏 引用
arXiv 2022年
作者: Manna, Siladittya Dey, Rakesh Chakraborty, Souvik Computer Vision and Pattern Recognition Unit Indian Statistical Institue Kolkata India Computer Vision Researcher
Applications on Medical Image Analysis suffer from acute shortage of large volume of data properly annotated by medical experts. Supervised Learning algorithms require a large volumes of balanced data to learn robust ... 详细信息
来源: 评论
Diving into the Depths of Spotting Text in Multi-Domain Noisy Scenes
arXiv
收藏 引用
arXiv 2023年
作者: Das, Alloy Biswas, Sanket Pal, Umapada Lladós, Josep Computer Vision and Pattern Recognition Unit Indian Statistical Institute Kolkata India The Computer Vision Center Computer Science Department Universitat Autónoma de Barcelona Barcelona Spain
When used in a real-world noisy environment, the capacity to generalize to multiple domains is essential for any autonomous scene text spotting system. However, existing state-of-the-art methods employ pretraining and... 详细信息
来源: 评论