咨询与建议

限定检索结果

文献类型

  • 416 篇 会议
  • 325 篇 期刊文献
  • 5 册 图书

馆藏范围

  • 746 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 522 篇 工学
    • 338 篇 计算机科学与技术...
    • 309 篇 软件工程
    • 147 篇 光学工程
    • 144 篇 信息与通信工程
    • 130 篇 生物工程
    • 94 篇 生物医学工程(可授...
    • 85 篇 控制科学与工程
    • 68 篇 电气工程
    • 54 篇 电子科学与技术(可...
    • 49 篇 机械工程
    • 34 篇 化学工程与技术
    • 29 篇 仪器科学与技术
    • 21 篇 建筑学
    • 20 篇 安全科学与工程
    • 19 篇 土木工程
    • 14 篇 交通运输工程
  • 346 篇 理学
    • 156 篇 物理学
    • 137 篇 生物学
    • 136 篇 数学
    • 59 篇 统计学(可授理学、...
    • 36 篇 化学
    • 25 篇 系统科学
  • 120 篇 管理学
    • 73 篇 图书情报与档案管...
    • 51 篇 管理科学与工程(可...
    • 17 篇 工商管理
  • 57 篇 医学
    • 51 篇 临床医学
    • 47 篇 基础医学(可授医学...
    • 36 篇 药学(可授医学、理...
    • 12 篇 公共卫生与预防医...
  • 19 篇 法学
    • 19 篇 社会学
  • 11 篇 农学
  • 6 篇 教育学
  • 4 篇 经济学
  • 3 篇 艺术学
  • 1 篇 军事学

主题

  • 44 篇 computer vision
  • 38 篇 image segmentati...
  • 24 篇 feature extracti...
  • 22 篇 object detection
  • 21 篇 cameras
  • 21 篇 training
  • 19 篇 magnetic resonan...
  • 17 篇 semantics
  • 15 篇 pattern recognit...
  • 15 篇 visualization
  • 14 篇 deep learning
  • 14 篇 image reconstruc...
  • 14 篇 shape
  • 12 篇 conferences
  • 12 篇 face recognition
  • 12 篇 convolution
  • 12 篇 humans
  • 11 篇 deep neural netw...
  • 11 篇 three-dimensiona...
  • 11 篇 neural networks

机构

  • 38 篇 computer vision ...
  • 14 篇 national key lab...
  • 13 篇 university of sc...
  • 12 篇 shanghai jiao to...
  • 12 篇 computer vision ...
  • 11 篇 xidian universit...
  • 11 篇 peking universit...
  • 10 篇 faculty of compu...
  • 9 篇 graduate institu...
  • 8 篇 hefei university...
  • 8 篇 shenzhen institu...
  • 8 篇 sun yat-sen univ...
  • 8 篇 department of el...
  • 7 篇 rajiv gandhi ins...
  • 7 篇 graduate institu...
  • 7 篇 computer vision ...
  • 7 篇 indian institute...
  • 7 篇 harbin institute...
  • 7 篇 school of comput...
  • 6 篇 south china univ...

作者

  • 39 篇 timofte radu
  • 26 篇 van gool luc
  • 14 篇 rajagopalan a.n.
  • 13 篇 lakshminarayanan...
  • 13 篇 qiao yu
  • 12 篇 sreeni k.g.
  • 11 篇 singh koushlendr...
  • 10 篇 danelljan martin
  • 10 篇 akgul yusuf sina...
  • 9 篇 zhang zhao
  • 9 篇 liu shuai
  • 9 篇 li chenghua
  • 9 篇 pal umapada
  • 9 篇 shivakumara pala...
  • 9 篇 lu tong
  • 8 篇 jiji c.v.
  • 8 篇 sun long
  • 8 篇 bakas spyridon
  • 8 篇 m. alam
  • 8 篇 hrishikesh p.s.

语言

  • 724 篇 英文
  • 20 篇 其他
  • 2 篇 土耳其文
检索条件"机构=Computer Vision Engineering Lab"
746 条 记 录,以下是211-220 订阅
排序:
Test-Time Training-Free Domain Adaptation
Test-Time Training-Free Domain Adaptation
收藏 引用
International Conference on Acoustics, Speech, and Signal Processing (ICASSP)
作者: Yongxiang Feng Weihua He Kaichao You Bing Liu Ziyang Zhang Yaoyuan Wang Minglei Li Yihang Lou Jiawei Li Guoqi Li Jianxing Liao Advanced Computing and Storage Lab Huawei Technologies Co. Ltd. School of Electronics Engineering and Computer Science Peking University China Language & Speech Innovation Lab Huawei Technologies Co. Ltd. GoTen AI Lab Department of Intelligent Vision Huawei Technologies Co. Ltd. China Department of Production Automation Development Huawei Technologies Co. Ltd. China Institute of Automation Chinese Academy of Sciences China
Deploying deep learning models to new environments is very challenging. Domain adaptation (DA) is a promising paradigm to solve the problem by collecting and adapting to unlabeled data in new environments. Though rese... 详细信息
来源: 评论
DEEP TRANSFORMER NETWORKS FOR TIME SERIES CLASSIFICATION: THE NPP SAFETY CASE
DEEP TRANSFORMER NETWORKS FOR TIME SERIES CLASSIFICATION: TH...
收藏 引用
2021 International Topical Meeting on Probabilistic Safety Assessment and Analysis, PSA 2021
作者: Zha, Bing Vanni, Alessandro Hassan, Yassin Aldemir, Tunc Yilmaz, Alper Photogrammetric Computer Vision Lab Ohio State University 2070 Neil Avenue ColumbusOH United States Nuclear Engineering Program Ohio State University 201 W. 19th Avenue ColumbusOH United States Department of Nuclear Engineering Texas A&M University Building 3133 423 Spence St College StationTX United States
A challenging part of dynamic probabilistic risk assessment for nuclear power plants is the need for large amounts of temporal simulations given various initiating events and branching conditions from which representa... 详细信息
来源: 评论
Procedural reasoning networks for understanding multimodal procedures  23
Procedural reasoning networks for understanding multimodal p...
收藏 引用
23rd Conference on Computational Natural Language Learning, CoNLL 2019
作者: Amac, Mustafa Sercan Yagcioglu, Semih Erdem, Aykut Erdem, Erkut Hacettepe University Computer Vision Lab. Dept. of Computer Engineering Ankara Turkey
This paper addresses the problem of comprehending procedural commonsense knowledge. This is a challenging task as it requires identifying key entities, keeping track of their state changes, and understanding temporal ... 详细信息
来源: 评论
Beyond Instruction Following: Evaluating Inferential Rule Following of Large Language Models
arXiv
收藏 引用
arXiv 2024年
作者: Sun, Wangtao Zhang, Chenxiang Zhang, Xueyou Yu, Xuanqing Huang, Ziyang Xu, Haotian Chen, Pei He, Shizhu Zhao, Jun Liu, Kang The Laboratory of Cognition and Decision Intelligence for Complex Systems Institute of Automation Chinese Academy of Sciences Beijing China School of Artificial Intelligence University of Chinese Academy of Sciences Beijing China CAS Engineering Laboratory for Intelligent Industrial Vision Institute of Automation Chinese Academy of Sciences Beijing China Department of Computer Science and Engineering Texas A&M University United States Shanghai Artificial Intelligence Laboratory China Xiaohongshu Inc China AI Lab AIGility Cloud Innovation Beijing China
Although Large Language Models (LLMs) have demonstrated strong instruction-following ability, they are further supposed to be controlled and guided by inferential rules in real-world scenarios to be safe, accurate, an... 详细信息
来源: 评论
A Survey of the Self Supervised Learning Mechanisms for vision Transformers
arXiv
收藏 引用
arXiv 2024年
作者: Khan, Asifullah Sohail, Anabia Fiaz, Mustansar Hassan, Mehdi Afridi, Tariq Habib Marwat, Sibghat Ullah Munir, Farzeen Ali, Safdar Naseem, Hannan Zaheer, Muhammad Zaigham Ali, Kamran Sultana, Tangina Tanoli, Ziaurrehman Akhter, Naeem Pattern Recognition Lab DCIS PIEAS Nilore Islamabad45650 Pakistan PIEAS Nilore Islamabad45650 Pakistan Deep Learning Lab Center for Mathematical Sciences PIEAS Nilore Islamabad45650 Pakistan Center of Secure Cyber-Physical Security Systems Khalifa University Abu Dhabi United Arab Emirates IBM Research United States Department of Computer Science Air University Islamabad Pakistan Department of Computer Science and Engineering Kyung Hee University Global Campus 1732 Gyeonggi-do Yongin17104 Korea Republic of Department of Electrical Engineering and Automation Aalto University Finland Finnish Center of Artificial Center Finland Faculty of Engineering and Green Technology Universiti Tunku Abdul Rahman Malaysia Computer Vision Department Mohamed Bin Zayed University of Artificial Intelligence United Arab Emirates Karachi Pakistan Department of Electronics and Communication Engineering Hajee Mohammad Danesh Science and Technology University Bangladesh HiLIFE University of Helsinki Finland
vision Transformers (ViTs) have recently demonstrated remarkable performance in computer vision tasks. However, their parameter-intensive nature and reliance on large amounts of data for effective performance have shi... 详细信息
来源: 评论
Density-aware and Depth-aware Visual Representation for Zero-Shot Object Counting
Density-aware and Depth-aware Visual Representation for Zero...
收藏 引用
International Conference on Acoustics, Speech, and Signal Processing (ICASSP)
作者: Fang Nan Feng Tian Ni Zhang Nian Liu Haonan Miao Guang Dai Mengmeng Wang Faculty of Electronic and Information Engineering Xi’an Jiaotong University Xi’an China Ministry of Education Key Laboratory of Intelligent Networks and Network Security Xi’an Jiaotong University Xi’an China School of Automation Northwestern Polytechnical University Xi’an China Computer Vision Department Mohamed bin Zayed University of Artificial Intelligence Abu Dhabi UAE SGIT AI Lab State Grid Corporation of China Zhejiang University of Technology Hang Zhou China
Previous methods often utilize CLIP semantic classifiers with class names for zero-shot object counting. However, they ignore crucial density and depth knowledge for counting tasks. Thus, we propose a density-aware an... 详细信息
来源: 评论
SynFacePAD 2023: Competition on Face Presentation Attack Detection Based on Privacy-aware Synthetic Training Data
SynFacePAD 2023: Competition on Face Presentation Attack Det...
收藏 引用
IEEE International Joint Conference on Biometrics (IJCB)
作者: Meiling Fang Marco Huber Julian Fierrez Raghavendra Ramachandra Naser Damer Alhasan Alkhaddour Maksim Kasantcev Vasiliy Pryadchenko Ziyuan Yang Huijie Huangfu Yingyu Chen Yi Zhang Yuchen Pan Junjun Jiang Xianming Liu Xianyun Sun Caiyong Wang Xingyu Liu Zhaohua Chang Guangzhe Zhao Juan Tapia Lazaro Gonzalez-Soler Carlos Aravena Daniel Schulz Fraunhofer Institute for Computer Graphics Research IGD Darmstadt Germany Department of Computer Science TU Darmstadt Darmstadt Germany Biometrics and Data Pattern Analytics Lab Universidad Autonoma de Madrid Spain Norwegian University of Science and Technology (NTNU) Norway ID R&D Inc New York US School of Cyber Science and Engineering Sichuan University Chengdu China School of Computer Science and Technology Harbin Institute of Technology Harbin China School of Electrical and Information Engineering Beijing University of Civil Engineering and Architecture China Biometrics and Security Research Group Hochschule Darmstadt Darmstadt Germany I+D Vision Center Santiago Chile
This paper presents a summary of the Competition on Face Presentation Attack Detection Based on Privacy-aware Synthetic Training Data (SynFacePAD 2023) held at the 2023 International Joint Conference on Biometrics (IJ...
来源: 评论
NTIRE 2023 Challenge on 360° Omnidirectional Image and Video Super-Resolution: Datasets, Methods and Results
NTIRE 2023 Challenge on 360° Omnidirectional Image and Vide...
收藏 引用
2023 IEEE/CVF Conference on computer vision and Pattern Recognition Workshops, CVPRW 2023
作者: Cao, Mingdeng Mou, Chong Yu, Fanghua Wang, Xintao Zheng, Yinqiang Zhang, Jian Dong, Chao Li, Gen Shan, Ying Timofte, Radu Sun, Xiaopeng Li, Weiqi Sheng, Xuhan Chen, Bin Ma, Haoyu Cheng, Ming Zhao, Shijie Huang, Huaibo Zhou, Xiaoqiang Ai, Yuang He, Ran Wu, Renlong Yang, Yi Zhang, Zhilu Zhang, Shuohao Li, Junyi Chen, Yunjin Ren, Dongwei Zuo, Wangmeng Yang, Hao-Hsiang Chen, Yi-Chung Huang, Zhi-Kai Chen, Wei-Ting Chiang, Yuan-Chun Chang, Hua-En Chen, I.-Hsiang Hsieh, Chia-Hsuan Kuo, Sy-Yen Zhang, Zebin Zhang, Jiaqi Wang, Yuhui Cui, Shuhao Huang, Junshi Zhu, Li Tian, Shuman Yu, Wei Luo, Bingchun Cui, Wanwan Xu, Tianyu Li, Chunyang Bao, Long Sun, Heng Zhang, Zhenyu Wang, Qian The University of Tokyo Japan Arc Lab Tencent Pcg China Peking University China Shenzhen Institute of Advanced Technology Cas China Platform Technologies Tencent Online Video China Computer Vision Lab Ifi & Caidas University of Würzburg Germany ByteDance China Peking University Shenzhen Graduate School China Mais&cripac Institute of Automation Chinese Academy of Sciences China School of Artificial Intelligence University of Chinese Academy of Sciences China University of Science and Technology of China China Beijing Institute of Technology China School of Information Science and Technology ShanghaiTech University China Harbin Institute of Technology China Graduate Institute of Electronics Engineering National Taiwan University Taiwan Department of Electrical Engineering National Taiwan University Taiwan Graduate Institute of Communication Engineering National Taiwan University Taiwan ServiceNow United States ShanghaiTech University China Meituan China Xiaomi Inc
This report introduces two high-quality datasets Flickr360 and ODV360 for omnidirectional image and video super-resolution, respectively, and reports the NTIRE 2023 challenge on 360° omnidirectional image and vid... 详细信息
来源: 评论
Polar-Net: A Clinical-Friendly Model for Alzheimer’s Disease Detection in OCTA Images
arXiv
收藏 引用
arXiv 2023年
作者: Liu, Shouyue Hao, Jinkui Xu, Yanwu Fu, Huazhu Guo, Xinyu Liu, Jiang Zheng, Yalin Liu, Yonghuai Zhang, Jiong Zhao, Yitian Cixi Institute of Biomedical Engineering Ningbo Institute of Materials Technology and Engineering Chinese Academy of Sciences China Cixi Biomedical Research Institute Wenzhou Medical University China School of Future Technology South China University of Technology Guangzhou China Pazhou Lab Guangzhou China Institute of High-Performance Computing Agency for Science Technology and Research Singapore Department of Computer Science Southern University of Science and Technology China Department of Eye and Vision Science University of Liverpool United Kingdom Department of Computer Science Edge Hill University United Kingdom
Optical Coherence Tomography Angiography (OCTA) is a promising tool for detecting Alzheimer’s disease (AD) by imaging the retinal microvasculature. Ophthalmologists commonly use region-based analysis, such as the ETD... 详细信息
来源: 评论
Visual Compositional Learning for Human-Object Interaction Detection  16th
Visual Compositional Learning for Human-Object Interaction D...
收藏 引用
16th European Conference on computer vision, ECCV 2020
作者: Hou, Zhi Peng, Xiaojiang Qiao, Yu Tao, Dacheng UBTECH Sydney AI Centre School of Computer Science Faculty of Engineering The University of Sydney DarlingtonNSW2008 Australia Shenzhen Key Lab of Computer Vision and Pattern Recognition Shenzhen Institutes of Advanced Technology Chinese Academy of Sciences Beijing China
Human-Object interaction (HOI) detection aims to localize and infer relationships between human and objects in an image. It is challenging because an enormous number of possible combinations of objects and verbs types... 详细信息
来源: 评论