咨询与建议

限定检索结果

文献类型

  • 5,169 篇 期刊文献
  • 3,479 篇 会议
  • 41 册 图书

馆藏范围

  • 8,689 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 5,837 篇 工学
    • 2,542 篇 计算机科学与技术...
    • 2,023 篇 软件工程
    • 1,423 篇 电子科学与技术(可...
    • 1,322 篇 信息与通信工程
    • 1,267 篇 电气工程
    • 963 篇 光学工程
    • 843 篇 控制科学与工程
    • 621 篇 生物工程
    • 558 篇 材料科学与工程(可...
    • 504 篇 生物医学工程(可授...
    • 498 篇 化学工程与技术
    • 449 篇 机械工程
    • 414 篇 仪器科学与技术
    • 371 篇 动力工程及工程热...
    • 249 篇 力学(可授工学、理...
    • 163 篇 冶金工程
    • 147 篇 交通运输工程
  • 4,227 篇 理学
    • 2,149 篇 物理学
    • 1,549 篇 数学
    • 718 篇 生物学
    • 559 篇 统计学(可授理学、...
    • 535 篇 化学
    • 359 篇 系统科学
  • 980 篇 管理学
    • 675 篇 管理科学与工程(可...
    • 310 篇 工商管理
    • 308 篇 图书情报与档案管...
  • 410 篇 医学
    • 339 篇 临床医学
    • 285 篇 基础医学(可授医学...
    • 183 篇 药学(可授医学、理...
  • 130 篇 法学
  • 115 篇 经济学
  • 70 篇 农学
  • 48 篇 教育学
  • 19 篇 军事学
  • 17 篇 文学
  • 12 篇 艺术学
  • 1 篇 历史学

主题

  • 136 篇 laboratories
  • 108 篇 deep learning
  • 106 篇 computer science
  • 105 篇 feature extracti...
  • 96 篇 machine learning
  • 82 篇 image segmentati...
  • 82 篇 computer vision
  • 80 篇 neural networks
  • 77 篇 computational mo...
  • 71 篇 optimization
  • 63 篇 reinforcement le...
  • 60 篇 semantics
  • 59 篇 object detection
  • 59 篇 artificial intel...
  • 58 篇 bandwidth
  • 53 篇 cameras
  • 53 篇 training
  • 52 篇 data mining
  • 51 篇 magnetic resonan...
  • 51 篇 control systems

机构

  • 157 篇 department of el...
  • 155 篇 school of optica...
  • 118 篇 yerevan physics ...
  • 100 篇 department for p...
  • 99 篇 department of ph...
  • 99 篇 faculty of scien...
  • 99 篇 departamento de ...
  • 99 篇 department of ph...
  • 97 篇 dipartimento di ...
  • 93 篇 faculté des scie...
  • 92 篇 kirchhoff-instit...
  • 90 篇 centre de calcul...
  • 89 篇 graduate school ...
  • 87 篇 department of ph...
  • 87 篇 department of ph...
  • 87 篇 department of ph...
  • 85 篇 department of ph...
  • 85 篇 institute of phy...
  • 82 篇 fakultät für phy...
  • 81 篇 institut für ast...

作者

  • 87 篇 c. alexa
  • 87 篇 g. bella
  • 87 篇 d. calvet
  • 87 篇 c. amelung
  • 86 篇 j. m. izen
  • 86 篇 s. veneziano
  • 86 篇 j. strandberg
  • 85 篇 f. buehrer
  • 85 篇 a. t. law
  • 85 篇 d. di valentino
  • 85 篇 n. orlando
  • 85 篇 y. tayalati
  • 85 篇 g. spigo
  • 85 篇 v. chiarella
  • 85 篇 f. siegert
  • 85 篇 a. dimitrievska
  • 85 篇 f. deliot
  • 84 篇 c. gumpert
  • 84 篇 h. a. gordon
  • 84 篇 a. c. könig

语言

  • 7,854 篇 英文
  • 602 篇 其他
  • 229 篇 中文
  • 1 篇 日文
检索条件"机构=Computer Vision Laboratory School of Electrical Engineering and Computer Science"
8689 条 记 录,以下是4741-4750 订阅
排序:
Recent advances and applications of deep learning methods in materials science
arXiv
收藏 引用
arXiv 2021年
作者: Choudhary, Kamal DeCost, Brian Chen, Chi Jain, Anubhav Tavazza, Francesca Cohn, Ryan WooPark, Cheol Choudhary, Alok Agrawal, Ankit Billinge, Simon J.L. Holm, Elizabeth Ong, Shyue Ping Wolverton, Chris Materials Science and Engineering Division National Institute of Standards and Technology GaithersburgMD20899 United States Theiss Research San diegoCA92037 United States Material Measurement Science Division National Institute of Standards and Technology GaithersburgMD20899 United States Department of NanoEngineering University of California San Diego CA92093 United States Energy Technologies Area Lawrence Berkeley National Laboratory BerkeleyCA United States Department of Materials Science and Engineering Carnegie Mellon University PittsburghPA15213 United States Department of Materials Science and Engineering Northwestern University EvanstonIL60208 United States Department of Electrical and Computer Engineering Northwestern University EvanstonIL60208 United States Department of Applied Physics and Applied Mathematics and the Data Science Institute Fu Foundation School of Engineering and Applied Sciences Columbia University New YorkNY10027 United States
Deep learning (DL) is one of the fastest growing topics in materials data science, with rapidly emerging applications spanning atomistic, image-based, spectral, and textual data modalities. DL allows analysis of unstr... 详细信息
来源: 评论
Resource Allocation Technique for Hybrid TDMA-NOMA System with Opportunistic Time Assignment
Resource Allocation Technique for Hybrid TDMA-NOMA System wi...
收藏 引用
IEEE International Conference on Communications Workshops, ICC
作者: Xinchen Wei Haitham Al-Obiedollah Kanapathippillai Cumanan Miao Zhang Jie Tang Wei Wang Octavia A. Dobre Department of Electronic Engineering University of York York United Kingdom The Hashemite University Jordan School of Electronic and Information Engineering South China University of Technology Guangzhou China School of Information Science and Technology Nantong University Nantong China Research Center of Networks and Communications Peng Cheng Laboratory Shenzhen China Department of Electrical and Computer Engineering Memorial University St. John's Canada
In this paper, we develop a resource allocation technique for a hybrid time division multiple access (TDMA) - non-orthogonal multiple access (NOMA) system with opportunistic time assignment. In particular, the availab... 详细信息
来源: 评论
A New AC/DC Half-Bridge/String-Inverter Hybrid-Structured Isolated Bi-directional Converter
A New AC/DC Half-Bridge/String-Inverter Hybrid-Structured Is...
收藏 引用
IEEE Energy Conversion Congress and Exposition
作者: Reza Emamalipour John Lam Advanced Power Electronics Laboratory for Sustainable Energy Research Dept. of Electrical Engineering and Computer Science Lassonde School of Engineering York University Toronto Canada
In this paper, a new bidirectional AC/DC converter based on a 5-switch string topology and an isolated CLLC resonant circuit is proposed for energy storage applications. In the battery side of the proposed circuit, on... 详细信息
来源: 评论
Explainable AI: Definition and attributes of a good explanation for health AI
arXiv
收藏 引用
arXiv 2024年
作者: Kyrimi, Evangelia McLachlan, Scott Wohlgemut, Jared M. Perkins, Zane B. Lagnado, David A. Marsh, William Gimson, Alexander Shafti, Ali Ercole, Ari Banerjee, Amitava Glocker, Ben Schafer, Burkhard Gatsonis, Constantine Grosan, Crina Sent, Danielle Berman, David S. Glass, David O'Regan, Declan P. Letsios, Dimitrios Morrissey, Dylan Pisirir, Erhan Leofante, Francesco Soyel, Hamit Williamson, Jon Grieman, Keri Dube, Kudakwashe Mardsen, Max Nagendran, Myura Tai, Nigel Kostopoulou, Olga Jones, Owain Curzon, Paul Stoner, Rebecca S. Tandle, Sankalp Joshi, Shalmali Mossadegh, Somayyeh Buijsman, Stefan Miller, Tim Madai, Vince Istvan School of Electronic Engineering and Computer Science Queen Mary University of London London United Kingdom School of Nursing Midwifery and Palliative Care King's College London London United Kingdom Centre for Trauma Sciences Blizard Institute Queen Mary University of London London United Kingdom Royal London Hospital Barts Health NHS Trust London United Kingdom Department of Experiment Psychology University College London London United Kingdom Cambridge Liver Unit Addenbrooke's Hospital Cambridge University Hospitals Hills Road Box 210 Cambridge United Kingdom University of Cambridge United Kingdom Cambridge Consultants Ltd. United Kingdom Division of Anaesthesia Cambridge Centre for AI in Medicine University of Cambridge Cambridge United Kingdom Magdelene College University of Cambridge United Kingdom Institute of Health Informatics University College London London United Kingdom Department of Computing Imperial College London London United Kingdom SCRIPT Centre for IT and IP Law School of Law University of Edinburgh United Kingdom Center for Statistical Sciences School of Public Health Brown University Providence United States Research Group Artificial Intelligence HU University of Applied Sciences Utrecht Netherlands Jheronimus Academy of Data Science Tilburg University Eindhoven University of Technology s-Hertogenbosch Netherlands Centre for Theoretical Physics Queen Mary University of London London United Kingdom School of Computing Ulster University Belfast United Kingdom MRC Laboratory of Medical Sciences Imperial College London London United Kingdom Department of Informatics King's College London United Kingdom Physiotherapy Department Barts Health NHS Trust London United Kingdom Sport and Exercise Medicine Queen Mary University of London London United Kingdom School of Electronic Engineering and Computer Science Queen Mary University of London United Kingdom Department of Computing Imperial College London United Kingdom Departmen
Proposals of artificial intelligence (AI) solutions based on increasingly complex and accurate predictive models are becoming ubiquitous across many disciplines. As the complexity of these models grows, transparency a...
来源: 评论
Transient thermo-mechanical analysis for bimorph soft robot based on thermally responsive liquid crystal elastomers
收藏 引用
Applied Mathematics and Mechanics(English Edition) 2019年 第7期40卷 943-952页
作者: Yun CUI Yafei YIN Chengjun WANG K. SIM Yuhang LI Cunjiang YU Jizhou SONG Institute of Solid Mechanics Beihang University Beijing 100191 China Department of Engineering Mechanics Soft Matter Research Center Key Laboratory of Soft Machines and Smart Devices of Zhejiang Province Zhejiang University Hangzhou 310027 China Materials Science and Engineering Program University of Houston Houston TX 77204 U. S.A. State Key Laboratory of Strength and Vibration of Mechanical Structures School of Aerospace Engineering Xi’an Jiaotong University Xi’an 710049 China Department of Mechanical Engineering University of Houston Houston TX 77204 U. S.A. Department of Electrical and Computer Engineering University of Houston Houston TX 77204 U. S.A. Department of Biomedical Engineering Texas Center for Superconductivity University of Houston Houston TX 77204 U. S.A.
Thermally responsive liquid crystal elastomers (LCEs) hold great promise in applications of soft robots and actuators because of the induced size and shape change with temperature. Experiments have successfully demons... 详细信息
来源: 评论
Photo-assisted technologies for environmental remediation
Nature Reviews Clean Technology
收藏 引用
Nature Reviews Clean Technology 2025年 第3期1卷 1-15页
作者: Bo Weng Jiangquan Lv Ning Han Bao-Lian Su Maarten Roeffaers Johan Hofkens Yongfa Zhu Shaobin Wang Wonyong Choi State Key Laboratory of Advanced Environmental Technology Institute of Urban Environment Chinese Academy of Sciences Xiamen China University of Chinese Academy of Sciences Beijing China College of Electronics and Information Science Fujian Jiangxia University Fuzhou China Department of Electrical and Computer Engineering University of Toronto Toronto Canada Laboratory of Living Materials at the State Key Laboratory of Advanced Technology for Materials Synthesis and Processing Wuhan University of Technology Wuhan China cMACS Department of Microbial and Molecular Systems KU Leuven Leuven Belgium Department of Chemistry KU Leuven Leuven Belgium Department of Chemistry Tsinghua University Beijing China School of Chemical Engineering University of Adelaide Adelaide South Australia Australia Department of Energy Engineering Korea Institute of Energy Technology (KENTECH) Naju South Korea
Industrial processes can lead to air and water pollution, particularly from organic contaminants such as toluene and antibiotics, posing threats to human health. Photo-assisted chemical oxidation technologies leverage...
来源: 评论
Leader-follower stochastic differential games under partial observation
Leader-follower stochastic differential games under partial ...
收藏 引用
第三十八届中国控制会议
作者: Zhipeng Li Minyue Fu Qianqian Cai Wei Meng School of Automation Guangdong University of Technology Guangdong Province Key Laboratory of Intelligent Decision and Cooperative Control School of Electrical Engineering and Computer Science University of Newcastle
This paper searches for the leader-follower stochastic differential Stackelberg game under a partial observed information. The controlled system equation and the observation equation are looked as the equality constra... 详细信息
来源: 评论
Semantic-aided Parallel Image Transmission Compatible with Practical System
arXiv
收藏 引用
arXiv 2025年
作者: Xu, Mingkai Wu, Yongpeng Shi, Yuxuan Xia, Xiang-Gen Debbah, Mérouane Zhang, Wenjun Zhang, Ping Department of Electronic Engineering Shanghai Jiao Tong University Shanghai200240 China School of Cyber and Engineering Shanghai Jiao Tong University Shanghai200240 China Department of Electrical and Computer Engineering University of Delaware NewarkDE19716 United States KU 6G Research Center Khalifa University of Science and Technology P O Box 127788 Abu Dhabi United Arab Emirates CentraleSupelec University Paris-Saclay Gif-sur-Yvette91192 France State Key Laboratory of Networking and Switching Technology Beijing University of Posts and Telecommunications Beijing100876 China
In this paper, we propose a novel semantic-aided image communication framework for supporting the compatibility with practical separation-based coding architectures. Particularly, the deep learning (DL)-based joint so... 详细信息
来源: 评论
Low-PMEPR preamble sequence design for dynamic spectrum allocation in OFDMA systems
arXiv
收藏 引用
arXiv 2020年
作者: Zhou, Yajing Zhou, Zhengchun Liu, Zilong Fan, Pingzhi Guan, Yong Liang School of Information Science and Technology Southwest Jiaotong University Chengdu611756 China School of Mathematics Southwest Jiaotong University Chengdu611756 China State Key Laboratory of Integrated Services Networks Xidian University Xian710071 China School of Computer Science and Electronic Engineering University of Essex United Kingdom Institute of Mobile Communications Southwest Jiaotong University Chengdu611756 China School of Electrical and Electronic Engineering Nanyang Technological University Singapore639798 Singapore
Orthogonal Frequency Division Multiple Access (OFDMA) with Dynamic spectrum allocation (DSA) is able to provide a wide range of data rate requirements. This paper is focused on the design of preamble sequences in OFDM... 详细信息
来源: 评论
Learning data-adaptive non-parametric kernels
The Journal of Machine Learning Research
收藏 引用
The Journal of Machine Learning Research 2020年 第1期21卷 8590-8628页
作者: Fanghui Liu Xiaolin Huang Chen Gong Jie Yang Li Li Department of Electrical Engineering ESAT-STADIUS KU Leuven Belgium Institute of Image Processing and Pattern Recognition Institute of Medical Robotics Shanghai Jiao Tong University Shanghai China PCA Lab Key Laboratory of Intelligent Perception and Systems for High-Dimensional Information of Ministry of Education School of Computer Science and Engineering Nanjing University of Science and Technology China and Department of Computing Hong Kong Polytechnic University Hong Kong SAR China Department of Automation BNRist Tsinghua University China
In this paper, we propose a data-adaptive non-parametric kernel learning framework in margin based kernel methods. In model formulation, given an initial kernel matrix, a data-adaptive matrix with two constraints is i... 详细信息
来源: 评论